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Abstract

Motivated by the ever-increasing prevalence of flexible task assignment within and

between teams, we study a team incentive design problem where multiple agents are

located on a network and work on a joint project. The principal seeks the least costly

mechanism to incentivize full efforts, by choosing the work sequence and the rewards

to the agents upon success. Whereas the agents’ actions are hidden to the principal,

they may be observed among the agents given the internal information that is deter-

mined by the network and the sequence. We show that under effort complementarity,

the transparency of the agents’ actions can reduce their incentive costs. Moreover, the

effectiveness of transparency decreases as an action becomes more transparent. In the

optimal sequence, the agents work sequentially in the order of ascending individual

importance to the project. The agents who move later effectively monitor their pre-

ceding peers and have higher incentive costs. When multiple teams collaborate, more

important agents also move later in their respective teams, while larger teams are allo-

cated toward either end of the optimal sequence. Meanwhile, only a small fraction of

the entire group of agents will serve as monitors. For several typical networks, simple

algorithms are offered to explicitly characterize the optimal mechanism.
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1 Introduction

Flexibility in task assignment is an outstanding feature of many modern organizations that

involve teamwork. Instead of conventional waterfall team, it has been increasingly common

for a cross-functional group of individuals to collaborate on value creation on a temporary

basis. The particular order of completing individual tasks is thus not predetermined; rather,

a substantial part of it is at the discretion of the team designer/manager. Notable exam-

ples include Amazon’s “two-pizza teams” and Spotify’s invention of its “Discover Weekly”

function. On a larger scope, agile collaboration among multiple teams is also common,

for example film production that involves independent crews in different locations, or an

NSF-funded R&D project that requires joint effort by various laboratories or universities.

Incentivizing team members’ efforts in this strategic context involves two main issues: the

first is the classical problem of moral hazard in teams (Holmstrom, 1982); the second, which

is more novel and less studied, is to consider peer monitoring among agents (see e.g., Winter

(2006, 2010)), and to leverage such internal information through planning the work sequence

in team design.

In this paper, we derive the optimal incentive design for team production under network-

based peer monitoring. The network of a team describes how agents may observe their

peers’ efforts, which may stem from workplace architecture, authority structure, informal

social networks and so forth. Combined with the work sequence, the network determines

further how agents will actually observe the efforts. We seek to address, in this particular

setting, Holmstrom (1982)’s classic remark: “...monitoring technologies were exogenously

given. In reality, they are not. The question is what determines the choice of monitors; and

how should output be shared so as to provide all members of the organization (including

monitors) with the best incentives to perform?” The core economic issue we focus on can

be summarized as “endogenous internal information”, i.e., which agents essentially serve as

monitors and which are to be monitored. Intuitively, the answer hinges on two attributes:

how important an agent is to the entire project’s success, in terms of his marginal contribution

to the success likelihood by exerting effort; and how connected the agent is in the network, in

terms of which peers’ incentives can be influenced directly or indirectly by his effort choice.

Our analysis reveals and explains how the interplay of these two forces ultimately pins down

an agent’s position in the sequence, and thus his role in network-based peer monitoring.

In the model, a group of agents work jointly on a risky project, each is responsible for an

individual task. An agent can increase the chance of the project’s success by exerting costly

effort, while the exact marginal effect of his effort depends on other team members’ inputs.
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Throughout the paper, we mainly focus on complementary technologies, i.e., the probability

of success is supermodular in agents’ efforts. Before performing his task, an agent can

potentially observe the efforts chosen by earlier movers. Specifically, the observability of

effort is governed by an exogenous and undirected network of the agents: If two agents i

and j are linked, then j can observe whether i exerted effort when j moves after i, and vice

versa.

Thus, the internal information of the team depends critically on the network structure.

A denser network suggests more transparent internal information, with the highest level of

transparency represented by a complete network and the lowest by an empty network. In

particular, we use a star network to represent a single team, and multiple stars linked by

the centers to represent collaborating teams. Such core-periphery structures are common in

real world organizations. More importantly, they allow us to investigate how the network

characteristics such as centrality measure (e.g., betweenness) determines the structure of

internal information. However, our framework readily applies to other types of networks.

The principal cannot observe the effort choice of any agent but is aware of the network

topology, and aims at inducing effort from each agent at the lowest possible costs. Our main

departure from the literature on incentive design in teams is the set of available mechanisms

that the principal can implement. Specifically, the principal determines (1) the work se-

quence, i.e., the sequence of moves by the agents, and (2) the reward to each agent upon

success of the project. That is, a feasible mechanism consists of both pecuniary and non-

pecuniary incentive instruments. To the best of our knowledge, this paper is the first to

investigate the optimal work sequence in a team incentive design problem.

Drawing on relevant literature such as Winter (2010), we have a ready characterization

of the optimal reward scheme given a fixed sequence of moves, and thus, our analysis may

focus on the novel element of designing an optimal sequence given the network topology.

As pointed out by Winter (2010), under a complementary technology, transparency of an

agent’s action can reduce his incentive cost. Specifically, exposing the agent’s low effort may

trigger a domino effect of more agents shirking, lowering the chance of the project’s success

and thus increasing the marginal influence of the agent’s effort. Furthermore, our analysis

reveals that the effectiveness of transparency on incentive is diminishing as an agent’s action

becomes more transparent, because under complementarity a low effort is less detrimental

to the project’s success when fewer agents exert effort. These two prominent facts imply

that a carefully designed sequence, and thus internal information, benefits the principal by

exploiting the externality between agents’ actions when peer monitoring is feasible.
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The characterization of optimal sequence is relatively straightforward in a complete net-

work. Since all the agents are interconnected, the principal must prefer that they move se-

quentially, because simultaneous moves will reduce action transparency and thereby increase

incentive costs. We consider heterogeneously important agents: an agent is more important

than another if, given an arbitrary set of other agents who exert effort, the project is always

more likely to succeed given the effort of the former agent than the latter. In this case, as

shown by Winter (2006), it is optimal to have more important agents move later, because

this ordering imposes the greatest implicit threat of shirking on the agents.

However, such a monotone ordering by importance does not directly apply to networks

that are less symmetric than a complete network. In Section 4, we consider a single team

that is represented by a star network. Following the above intuition, it is clear that any

agent who moves after the center, referred to as a successor, should be more important than

any agent who moves before the center, referred to as a predecessor. Thus, the problem boils

down to determining the number of successors. Due to the effect of action transparency,

increasing the number of successors can reduce the incentive costs of the center and all the

remaining predecessors. However, as the effectiveness of transparency is diminishing, the

marginal reduction in the total incentive costs decreases monotonically, thereby uniquely

pinning down the optimal number of successors. Effectively, those successors serve as the

monitors of the team, while the center serves as an internal information intermediary. The

optimal internal information balances the principal’s two countervailing motives: a larger set

of predecessors to increase the number of less-rewarded agents, and a larger set of successors

to lower the reward to each predecessor.

In Section 5, we consider multiple collaborating teams that are represented by multiple

stars linked by the centers. We show that a “cross-star effect” emerges in this hierarchical

structure. Specifically, a successor in a star that moves later can impose an implicit threat of

shirking on more earlier movers, leading to a more effective peer monitoring. In particular,

when the agents are equally important to the project but the teams differ in size, the cross-

star effect will lead to a “V-shaped” sequence. That is, along the optimal sequence, the stars

are first ordered in descending order of size, and then in ascending order of size. In the first

group of stars, each peripheral agent moves before his center, whereas in the second group

each peripheral agent moves after his center; thus, those successors effectively serve as the

monitors of the whole team, while the centers serve as internal information intermediaries.

The rationale of such a V-shaped layout is that by allocating large teams toward either

end of the sequence, the principal can create a greater implicit threat of shirking, while
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simultaneously leveraging that implicit threat over more agents.

Then, we turn to the case in which all the teams are the same size but the agents may

differ in importance. We extend the assumption of importance order from individual agents

to teams, in the sense that team i is more important than team j if i’s center is more

important than j’s center and any k-th important peripheral agent of i is more important

than his counterpart in j. In the optimal sequence, similar to the single team case, in each

team more important peripheral agents move after the center. Moreover, due to the cross-

star effect, each successor of a star is more important than every predecessor of each star that

moves later. Naturally, one may expect that a more important star should move after a less

important one. However, this is not necessarily the case. Note that in this multi-star network,

switching the orders of two teams means altering simultaneously the set of monitoring agents

and the set of agents being monitored. With the concept of complementarity, it is unclear

whether it is optimal to let more important agents monitor the agents whose actions are

more transparent or monitor those with less transparent actions. We show that, however,

if the notion of complementarity generalizes from the super-modularity in agents’ efforts to

the super-modularity in agents’ efforts and importance, then a more important team moves

after a less important one, and thus has more successors than the latter.

These findings reveal how an agent’s role in peer monitoring is jointly determined by

his relative importance to the project and his position in the network. In response to

Holmstrom’s question, our results suggest that an agent who ranks higher in importance

is more likely to be endogenously assigned a monitor’s role, while an agent in a larger team

either (indirectly) monitors more peers’ actions, or is monitored by more peers, and that

an agent in a central position of the network serves as an internal information intermediary.

Furthermore, we argue that whereas peer monitoring is effective in providing incentive, it is

increasingly costly. On the one hand, the benefit from transparency is diminishing; on the

other hand, a monitor’s incentive cost is relatively high, as no one will monitor the monitor.

We show that in the optimal sequence, only a small fraction of the agents (more precisely, a

lower order number of the population) will serve as monitors.

Finally, in designing the optimal incentive scheme for both a single team and multiple

collaborating teams, we offer simple algorithms to explicitly characterize the optimum. These

algorithms guarantee that the optimal sequence is identified within a number of calculations

bounded above by the number of agents. Moreover, as an extension, we show that the above

results and the associated algorithms are still valid when only a subset of the tasks is flexible

in sequencing, for example due to some technological constraints.
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Related literature. The theoretical literature on incentive design for teamwork is extensive

and growing. The trade-off an agent faces between working and shirking originated from the

classical literature on moral hazard in teams (Alchian and Demsetz, 1972; Holmstrom, 1982;

Holmstrom and Milgrom, 1991; Itoh, 1991). Subsequent studies developed this literature to

static contracting on teamwork with a number of variations, such as externalities (McAfee

and McMillan, 1991; Segal, 1999; Babaioff et al., 2012), specialization versus multitasking

(Balmaceda, 2016), loss-averse agents (Balmaceda, 2018), and network-based production

spillover (Sun and Zhao, 2021). Our main contribution to this literature is to consider the

endogenization of internal information among the agents in the presence of moral hazard.

Several recent papers have investigated how including or altering the scheme of infor-

mation sharing among agents affects incentive design. Zhou (2016) shows that the welfare-

optimal organization of team members is a chain when the first mover observes the state

of nature and the later movers observe their immediate predecessor’s effort. Our analysis

produces a similar result when the exogenous network of internal information is complete.

Gershkov et al. (2016) study the efficient contract design given that some team member

may share information about a payoff-relevant state, and they show that efficiency can be

achieved if contracts take into account a contest ranking across agents. Au and Chen (2021)

characterize the optimal long-term contract in teams of two members, with efforts observ-

able between the paired agents. In Camboni and Porcellacchia (2021), the principal observes

noisy signals about efforts, and may condition the contract offered to each team member on

both her individual signal and the whole project’s outcome. The optimal incentive scheme

features a partition between insulated and non-insulated agents ranked by signal precision.

A comprehensive study on the role of internal information in effort-based teamwork, with

an exogenous sequence of task assignment, has been provided by Winter (2004, 2006, 2010).

This is the main strand of literature we follow on building the theoretical framework. Our

results indicate that some peer information architectures are more likely to emerge than

others, once the sequence becomes the principal’s choice. Halac et al. (2021) also investigate

the incentive design problem in teamwork in the presence of moral hazard, but the principal

leverages uncertainty of ranking among agents instead of internal information. Consequently,

they show that discrimination is suboptimal in contrast to Winter (2004). Gershkov and

Winter (2015) study the optimal incentive design with fixed work sequence, random peer

monitoring and the principal’s choice of costly individual monitoring, and they show that

peer monitoring substitutes for the principal’s monitoring when the production technology is

complementary. The broad idea of the interplay between early and late movers in teams, and
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how a designer can exploit such structure for efficiency or cost saving, have also been studied

from other perspectives including information-based leadership (Hermalin, 1998; Zhou and

Chen, 2015; Zhou, 2016), tournaments in team production (Gershkov et al., 2009, 2016) and

various forms of payoff externalities (Che and Yoo, 2001; Segal, 2003; Bernstein and Winter,

2012).

The importance of internal information in incentive design has also been noted by data.

Empirical evidence suggests that workers’ productivity and willingness to work respond

positively to observed efforts of peers (Ichino and Maggi, 2000; Heywood and Jirjahn, 2004;

Gould and Winter, 2009; Mas and Moretti, 2009). Experimental studies on behavior in team

production have also indicated that an agent’s contribution in teamwork is highly responsive

to internal information (Carpenter et al., 2009; Steiger and Zultan, 2014) and that unequal

rewards tend to facilitate coordination and improve efficiency (Goerg et al., 2010).

Organization. The rest of the paper is organized as follows. Section 2 lays out the model.

Section 3 analyzes the full transparency benchmark and presents some preliminary results.

Section 4 and 5 characterizes, respectively, the optimal incentive design in a single team and

in collaborating teams. Section 6 concludes. All proofs are in the Appendix.

2 Model

Players and actions. A principal (she) owns a project that is collectively managed by a

team, denoted as a set I of n agents. Each agent (he) is responsible for a single task and

decides whether to exert effort. Formally, each agent i chooses ai ∈ Ai ≡ {0, 1}, with ai = 1

if he chooses to exert effort and ai = 0 if he shirks. The cost of effort is c > 0 and constant

across all the agents, whereas shirking is costless. To save on notation, we normalize c to 1

without loss of generality. Hereafter, we use the terms work and exert effort interchangeably.

Technology. The organization’s technology is a mapping from a profile of effort levels to a

probability of the project’s success. For a subset S ⊆ I of working agents, the probability of

the project’s success is p(S). Throughout the paper, we assume that p is increasing in the

sense that if T ⊂ S, then p(T ) < p(S). Moreover, we distinguish between the technology’s

properties of complementarity and substitutability. A technology p satisfies complementarity

among agents if for every two sets of agents S and T with T ⊂ S and every agent i /∈ S,

we have p(S ∪ {i})− p(S) > p(T ∪ {i})− p(T ); that is, i’s effort is more effective if the set

of other agents who exert effort enlarges. Conversely, we say that p satisfies substitutability

among agents if p(S ∪ {i})− p(S) ≤ p(T ∪ {i})− p(T ). In addition, we distinguish between
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different agents’ importances to the project. We say that agent i is (weakly) more important

than j if for every coalition S ⊆ I with i, j ∈ S, we have p(S\{i}) ≤ p(S\{j}); that is, i’s

shirking is more detrimental than j’s to the chance of success.1 We assume that the set I is

totally ordered in terms of agent importance. Analogously, we say that a set of agents T is

(weakly) more important than another set T ′ if for every coalition S ⊆ I with T, T ′ ⊆ S, we

have p(S\T ) ≤ p(S\T ′); in particular, if T ′ ⊂ T , then this holds automatically due to the

monotonicity of p.

Network. The organizational structure of the team, also referred to as the network of the

agents, is represented by an exogenous and undirected graph g. We write ij ∈ g to indicate

that agents i and j are directly linked, and say that i and j are neighbors ; in particular, we

assume that ii /∈ g for any agent i.

In applications of our framework, network g could stem from the workplace architecture,

the authority structure, geographical locations, informal social networks and so forth. We

assume that the structure of g is common knowledge.

Mechanism. Before the agents perform the tasks, the principal designs a work sequence,

or simply a sequence, π, such that agent i is the πi-th player to move, with πi ∈ {1, . . . , n}.
The principal cannot monitor the agents’ efforts, but simply knows whether the project is a

success after all the tasks have been performed. In addition, the principal designs a reward

scheme v = (v1, . . . , vn), such that agent i receives vi ≥ 0 if the project turns out to be a

success, and receives zero payoff otherwise.

A mechanism {π, v} consists of a sequence π and a reward scheme v. Throughout, we

assume that the principal can commit to the mechanism. In Appendix A.2, as an extension,

we consider the case in which only a subset of the tasks is flexible in sequencing.

Internal information. The agents’ internal information about their peers’ effort levels is

jointly determined by the graph g and the sequence π. Specifically, agent i observes agent

j’s action, or simply i sees j, before i moves if and only if i and j are neighbors and i moves

after j.2 That is, ij ∈ g means that i can see j based on the network, and i will see j when

he moves after j. As g is exogenous, we drop it in the subsequent notations. For every π,

we define Ni(π) := {j|ij ∈ g, πi > πj} to be the set of agents whom agent i sees given the

internal information. To save on notation, we write Ni for the set Ni(π) henceforth.

1Alternatively, one may find it more intuitive to say that if i is (weakly) more important than j, then for
any S with i, j /∈ S, p(S∪{i}) ≥ p(S∪{j}), i.e., i’s effort is more effective than j’s, ceteris paribus. Whereas
the two definitions are clearly equivalent, we find the former more convenient for our subsequent analysis.

2If i and j move simultaneously, then neither of them can see the other.
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Principal’s problem. Consider the game that is defined by the set of agents I, the agents’

action space {Ai}i∈I , the network g and a mechanism {π, v}. A (pure) strategy of agent i is a

mapping si : 2Ni → {0, 1}, which specifies the agent’s action as a function of his information

about the effort levels of the agents in Ni. Given a strategy profile s = (s1, . . . , sn), agent

i’s expected utility equals

Ui(s) := p(W (s))vi − 1(si = 1),

where W (s) is the set of agents who work given s, and 1(·) is the indicator function.

A mechanism {π, v} is effort-inducing (EFI) with respect to the network if there exists a

perfect Bayesian equilibrium (PBE) in the resultant game, so that all the agents exert effort.

The principal’s problem is to design an EFI mechanism that yields minimal total rewards to

the agents among all EFI mechanisms, which is called an optimal mechanism. In particular,

given a sequence π, a reward scheme v∗(π) is optimal if {π, v∗(π)} is an optimal mechanism.

The principal’s objective is meaningful when the project’s value is relatively high and the

agents’ efforts are efficient to raise the probability of success. Alternatively, one can consider

the mechanisms that maximizes the principal’s expected net profit, but we refrain from this

approach as it does not provide new insights while complicates the analysis remarkably.

2.1 Optimal Reward Scheme

As a helpful preliminary result, we first characterize the optimal reward scheme for a fixed

sequence π, applying Winter (2010)’s main results.3

Define Mi(π), Mi for short, to be the set of agents such that for each j ∈Mi, there exists

a sequence {kr} in which j sees k1 sees k2 sees . . . kr sees i. For expositional convenience,

we call the agents in Mi those who can ultimately learn i’s action based on the notion that

everyone in Mi would be informed of i’s action if an agent could share his information with

those who see him. The proposition below characterizes the optimal reward scheme v∗(π)

with respect to an arbitrary sequence π.

Proposition 1. For any fixed sequence π: (i) if p is complementary, then the optimal reward

scheme v∗(π) pays agent i v∗i = [p(I) − p(I\({i} ∪Mi))]
−1; (ii) if p is substitutable, then

v∗(π) is invariant with respect to π and pays agent i v∗i = [p(I)− p(I\{i})]−1.

When the agents perform the tasks sequentially, they face an implicit threat of shirking.

3Winter (2010) characterizes the optimal reward scheme for a fixed internal information structure under
substitutability (Proposition 2) and complementarity (Proposition 4), respectively.
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Specifically, the exposure of a low effort might induce an agent who observes this action to

shirk and consequently triggers a domino effect of shirking, making success less likely. This

implicit threat thus reduces the agent’s incentive cost. Under a complementary technology

and the optimal reward scheme, it is indeed sequentially rational for an agent to shirk once he

sees someone shirking, making the implicit threat credible. Moreover, Proposition 1 implies

that if agent i’s action becomes more transparent in the sense that the set Mi enlarges, then

i should be rewarded less because he is more willing to work due to a greater implicit threat.

That is, under complementarity action transparency can reduce an agent’s incentive cost.

In contrast, under a substitutable technology, the internal information has no impact on

incentives as if all the agents moved simultaneously. To implement full efforts, the principal

must provide the agents with sufficient incentives when they believe that all their teammates

are working. However, under substitutability, such a reward scheme gives each agent an even

stronger incentive to work when he sees someone shirking. This eliminates the implicit threat

of shirking that is critical in the complementarity case, thereby preventing the principal from

saving the incentive costs through the design of internal information.

In what follows, we shall focus on the more interesting case of complementarity. Because

I is finite, Proposition 1 ensures that an optimal mechanism exists; thus, it remains to find

such a mechanism by characterizing the optimal sequence.

3 Full Transparency Benchmark: Complete Networks

As a reference point, we study a complete network where all the agents are interconnected.

This network topology leads to the richest internal observation structure in the sense that

in any sequence, each agent can observe all preceding actions.4 Before analyzing complete

networks, we lay out two general results which hold for any network g.

First, we show that if two agents are neighbors, they cannot move simultaneously in the

optimal sequence. This is summarized by the lemma below:

Lemma 1. For any two agents i and j, if ij ∈ g, then π∗i 6= π∗j .

Under complementarity, it is suboptimal to make two neighbors perform simultaneously.

This is because doing so reduces the transparency of actions, thereby mitigating the implicit

threat of shirking and thus increasing incentive costs.

4Winter (2006) considers a similar setting in which the tasks must be performed sequentially in the order
1, 2, . . . , n and the agents can observe all preceding actions, and identifies the optimal sequence with respect
to the importance of agent, as well as the associated reward scheme.
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Second, we show that if two agents share the same set of neighbors other than themselves

and either one can learn the other’s action in the optimal sequence, then the more important

agent moves later. Formally, we have the following lemma:

Lemma 2. For any two agents i and j such that {k|ik ∈ g, k 6= j} = {k|jk ∈ g, k 6= i} and

i is more important than j, if in π∗ either i ∈M∗
j or j ∈M∗

i , then π∗i > π∗j .

Intuitively, if the more important agent i moves before the less important agent j, then

the principal can profit by switching their orders. Because i and j share the same set of

neighbors other than themselves, swapping i and j would only affect the rewards of i, j and

every agent k such that j ∈Mk and i /∈Mk, i.e., the agents whose actions can be ultimately

learned by j but not i. In particular, the principal can reduce k’s reward by replacing j’s

position with i, because if k shirks he will then trigger a more important agent to shirk,

leading to a greater implicit threat. Analogously, i’s new reward will be lower than j’s old

reward, while j’s new reward equals i’s old reward. Thus, the principal can reduce the total

incentive costs by assigning the more important agent to the later stage.

Now, consider a complete network. Lemma 1 implies that in the optimal sequence, the

agents move sequentially in the order 1, 2, . . . , n; thus, agents in later stages effectively serve

as the monitors of the team, and will punish their peers’ shirking actions by shirking as well.

In addition, Lemma 2 implies that the agents move in ascending order of importance; thus,

the monitors are relatively more important. For ease of exposition, relabel the agents such

that agent i is (weakly) less important than i+1, i ≤ n−1, with n being the most important.

The next proposition characterizes the optimal mechanism in a complete network.

Proposition 2. If g is a complete network and the agents are increasingly important, then

the optimal mechanism {π∗, v∗} satisfies that (i) π∗ is the identity permutation; (ii) agent i

has a reward v∗i = [p(I)− p({j|j < i})]−1. In particular, if two agents are equally important,

then exchanging their orders only still leads to an optimal sequence.

A prominent implication of Proposition 2 is that agents in later stages (the monitors)

should be rewarded more generously even if all the agents are equally important. Intuitively,

an agent moving later has a less transparent action, and thus, is more costly to incentivize.

Moreover, Proposition 2 implies that the gap between two adjacent agents’ rewards increases

along the optimal sequence. This is because under complementarity a low effort is less detri-

mental to the project when fewer agents work. This fact implies that while the transparency

of an agent’s action can reduce his incentive cost, the effectiveness of transparency on provid-

ing incentives is diminishing as the action becomes more transparent. To illustrate, suppose
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a subset S of agents who could not initially learn agent i’s action are now able to learn the

action, then by Proposition 1 the change in the optimal reward to i is given by

p(I\({i} ∪Mi))− p(I\({i} ∪Mi ∪ S))

[p(I)− p(I\({i} ∪Mi))][p(I)− p(I\({i} ∪Mi ∪ S))]
. (1)

Note that as the set Mi enlarges, the numerator decreases due to complementarity, while the

denominator increases due to monotonicity; thus, the ratio decreases. That is, the marginal

reduction in the reward is decreasing as i’s action becomes more transparent. This implies

that in a complete network, an agent’s reward is convex in his order. To summarize:

Corollary 1. If g is a complete network, then under the optimal mechanism {π∗, v∗}, v∗i is

increasing and strictly convex in i.

Corollary 1 means that ex ante identical agents may obtain increasingly different rewards

when the technology is complementary and the principal wishes to implement the least-cost

full-effort mechanism by leveraging peer-monitoring. This is because the agents may be ex

post different with respect to the optimal internal information, and under complementarity

action transparency can reduce agents’ incentive costs, with a diminishing marginal effect.

To conclude this section, note that a complete network yields the richest transparency,

and thus imposes the greatest implicit threats of shirking on the agents. The corollary below

states that the total rewards to the agents are the least in complete networks among all

network topologies. This also means that Proposition 2 provides a sharp lower bound for

the total rewards of optimal mechanisms.

Corollary 2. A complete network generates minimal total payoffs to the agents, and thus

maximal payoff to the principal.

A complete network is the most favorable for the principal as it yields the richest internal

information. Such a network can represent the emerging workplace architecture “war room”

that is adopted by different organizations. The movement to such open-space environment

allows workers to better monitor their peers’ efforts, thereby enhancing the implicit incentive

of working, which is generated by this mutual observability. In our model, the network g is

exogenously given; in other situations, the principal may be able to improve the connection

between agents (i.e., by adding links to g); hence, she may find it profitable to transform g

into a complete network by for example upgrading IT infrastructure, adopting open-space

workplace architecture, organizing more recreational activities for employees, and so forth.
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4 Incentive Design for a Single Team

In this section, we study the optimal incentive design for a single team that is represented

by a star network. A star network features a particular node i such that every link in the

network involves node i; thus, agent i is termed as the center of the star, and the rest of the

agents are termed as the peripheral agents. In what follows, we assume that n ≥ 3.

Star network structures are common in organizations, and often serve as basic units for

more complex networks. For example, in most scientific labs, when a project leader works

with his/her fellow researchers, the leader often serves as the center of the team, while each

fellow researcher works on an individual task and communicates the progress only to the

leader. Such a team thus has a star network structure. Usually, the principal investigator

(PI) of the lab can only observe the outcome of the entire project and chooses how to reward

the team based on the final result. Other examples of star networks may include a general

contractor and subcontractors, a book editor and chapter contributors, and so forth.

To find the optimal sequence for a star network, note that it suffices to characterize the

set of the center’s successor(s), with the possibility of an empty set. For ease of exposition,

we relabel the peripheral agents by importance from 1 to n−1, with a higher index referring

to a more important agent. Provided there is no confusion, let the center be the n-th agent

who is not necessarily the most important agent. Note that every peripheral agent has the

same unique neighbor, i.e., the center. Then by Lemma 2, we have the following lemma:

Lemma 3. If in π∗ the center has both a nonempty set of predecessors and a nonempty set

of successors, then the successors are uniformly more important than the predecessors.

The intuition of Lemma 3 has been suggested already; that is, if more important agents

move in later stages, then a low effort will induce agents with higher importance to shirk and

is thus more detrimental to success, thereby allowing the principal to reduce incentive costs.

The relative importance between the center’s predecessors and successors implies that the

optimal sequence for a star network can be summarized by a sufficient statistic, that is, the

number of the center’s successor(s).5 Let m be the number of the center’s successor(s), with

0 ≤ m ≤ n−1. Thus, the center has n−1−m predecessors; if each of them shirks, then the

center and all his successors shirk accordingly under the optimal reward scheme. Similarly,

if the center shirks, then all his successors shirk as well. In contrast, the center’s successors

cannot trigger anyone to shirk because their actions are unobservable. Define V ∗(m) as the

5This is because the relative orders between the center’s predecessors or successors does not affect their
incentive costs, as each individual’s action is equally transparent for predecessors and successors, respectively.
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total rewards to the agents under the optimal reward scheme when the m most important

peripheral agents move after the center. Thus, by Proposition 1, V ∗(m) is given by

V ∗(m) =
n−1−m∑

i=1

1

p(I)− p({j|j < n−m}\{i})︸ ︷︷ ︸
rewards to the predecessors

+
1

p(I)− p({j|j < n−m})︸ ︷︷ ︸
reward to the center

+
n−1∑

i=n−m

1

p(I)− p(I\{i})︸ ︷︷ ︸
rewards to the successors

.

To find the optimizer m∗, we compare V ∗(m) with V ∗(m+ 1); the difference between the

two items is the marginal effect of an additional successor on the total rewards. By direct

calculation, for any m with 0 ≤ m ≤ n− 2, we have

V ∗(m+ 1)− V ∗(m) =
n−2−m∑

i=1

1

p(I)− p({j|j < n−m− 1}\{i})

−
n−2−m∑

i=1

1

p(I)− p({j|j < n−m}\{i})

− 1

p(I)− p({j|j < n−m})
+

1

p(I)− p(I\{n−m− 1})
. (2)

The sum of the first three terms on the RHS of (2) is the net change in the rewards to the

center and his predecessors. Since p is increasing, this value is negative, i.e., by increasing

the number of successors, the total rewards to the center and his predecessors decrease.

The reason is two-fold: first, creating more successors reduces the number of the rest of the

agents; more importantly, doing so makes the actions of the center and his predecessors more

transparent, thereby enhancing the implicit threat of shirking for these agents and reducing

the incentive costs. In this regard, we call these terms together the marginal benefit (MB)

of more successors. Formally, we define

MB(m) :=
n−2−m∑

i=1

[
1

p(I)− p({j|j < n−m}\{i})
− 1

p(I)− p({j|j < n−m− 1}\{i})

]
+

1

p(I)− p({j|j < n−m})
.

In contrast, the last term on the RHS of (2) is positive, which is the extra reward to the

new successor. Analogously, we call this term the marginal cost (MC) of more successors.
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Formally, we define,

MC(m) :=
1

p(I)− p(I\{n−m− 1})
.

Note that MC(m) is nondecreasing in m. This is because each new successor of the center is

(weakly) less important than the current ones, meaning that his incentive cost is higher. It

follows that if MB(m) is decreasing in m, then there exists a unique optimizer m∗ (either an

interior solution or a corner solution). Lemma 4 below shows that under complementarity,

the marginal benefit of more successors is indeed decreasing.

Lemma 4. MB(m) is decreasing in m, whereas MC(m) is nondecreasing in m.

Intuitively, as the center obtains more successors, his action becomes more transparent,

so do his predecessors’ actions. As argued previously, the effectiveness of action transparency

on providing incentives is diminishing. Consequently, the reduction in payments decreases

as the center obtains more successors. This effect is amplified by the decreasing number of

predecessors. In addition, because each successor is more important than all the predecessors,

a low effort of the center or his predecessor will trigger on average less important agents to

shirk when there are more successors, meaning that the average implicit threat of shirking

is weaker. In summary, the marginal benefit of more successors is diminishing.

Lemma 4 ensures that the optimal sequence is essentially unique and can be succinctly

characterized by an integer m∗ which is given by

m∗ := min{m|MB(m) ≤MC(m)}. (3)

The next proposition shows that in the optimal sequence, the center never moves the first; if

the center is sufficiently more important than any peripheral agent, then he moves the last.

Proposition 3. If g is a star network, then the optimal mechanism {π∗, v∗} satisfies that (i)

the center has m∗ successor(s), each of them is more important than the center’s predecessors,

where m∗ is given by (3) with 0 ≤ m∗ ≤ n− 2; (ii) v∗ is given by Proposition 1 accordingly.

Moreover, if [p(I)− p(I\{n− 1})] < δ [p(I)− p(I\{n})] for some small δ > 0, then m∗ = 0,

where agent n− 1 is the most important peripheral agent and agent n is the center.

The intuition of why the center never acts the first is straightforward. Suppose the center

moves the first, then it is profitable to swap the center’s position with that of a successor.

This is because in the new sequence, the agent’s action is as transparent as the center’s
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old action, which will be observed by all the other agents, while the center’s action is more

transparent than the agent’s old action which is unobservable. Because the rest of the agents

obtain the same rewards, the total rewards are lower in the new sequence.

Proposition 3 states that if the center is sufficiently more important than the peripheral

agents, in the sense that the center’s shirking is much more detrimental to success, then he

should act the last. Intuitively, if the center is significantly important, then his predecessors’

incentive costs are relatively low due to the strong implicit threat of shirking. By contrast,

the center’s successors are free from the implicit threat and thus have relative high incentive

costs.6 This means that creating more successors will never be profitable. Thus, in this case

the center will serve as the unique monitor of the team.

In particular, if all the agents are equally important, then 1 ≤ m∗ ≤ n − 2; that is, the

center always acts in an interior stage. This is because with identical importance, each agent

i’s payoff depends only on the cardinality of Mi, irrespective of his identity. By assigning the

center to some interior stage, the mechanism allows the peripheral agents to learn their peers’

actions through the center, as if the center served as an internal information intermediary

through which the successors could monitor the predecessors. Such a layout maximizes the

layers of informational hierarchy, thereby improving the transparency of actions.

An algorithm to identify π∗. The previous analysis indicates that there exists a simple

algorithm to find the optimal sequence for star networks. Specifically, starting from m = 0,

allocate the peripheral agents to the set of the center’s successors one by one from the most

important to the least, until the first time when MB(m) ≤MC(m) and therefore m = m∗.

When the team size is relatively large, this algorithm can remarkably simplify the search of

the optimal sequence. In addition, the relative orders among the predecessors or successors

do not affect the total rewards, and thus, the principal has substantial flexibility in choosing

the optimal mechanism.

As a comparative-statics analysis, we study the impacts of the importance of individual

task on the optimal sequence for a star network. Specifically, we examine how the number

of the center’s successors in the optimal sequence varies with the importance of individual

task. For ease of exposition, we consider an example with homogeneously important agents:

Example 1. Suppose that g is a star network with n ≥ 3 agents, and that the project is

a success if and only if all the tasks are successful. Each task is successful with probability

6Indeed, for any 1 ≤ m ≤ n−2, the incentive costs of the center and his predecessors’ are bounded above
by [p(I) − p(I\{n})]−1, whereas that of a center’s successor is bounded below by [p(I)− p(I\{n− 1})]−1

.
Given the assumption, the latter incentive cost is more than 1/δ times of the former, for some small δ > 0.
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Figure 1: Marginal Benefit and Marginal Cost as a Function of Importance.

1 if the agent works, and is successful with probability α ∈ (0, 1) if the agent shirks. A

lower probability α means that an agent’s shirking is more detrimental in expectation to the

project’s success, and hence (effort on) his task is more important. Let w be the number

of agents who work, then p(w) = αn−w, because all the tasks are independent. Clearly, p is

increasing and satisfies complementarity. Applying the previous results, we express MB(m)

and MC(m) explicitly in the following:

MB(m;α) =
n−m− 2

1− αm+2
− n−m− 2

1− αm+3
+

1

1− αm+1
and MC(m;α) =

1

1− α
.

It follows that for a fixed α ∈ (0, 1), MB(m) is decreasing in m, and that MB(0) > MC(0)

and MB(n − 2) < MC(n − 2). Thus, the optimizer m∗ exists and is an interior solution

for any α ∈ (0, 1). In addition, from basic mathematical analysis, we have that for a fixed

m, both MB(α) and MC(α) are increasing and strictly convex in α, and that MB(α) is

single-crossing MC(α) from below in the domain α ∈ (0, 1). This is illustrated in Figure 1.

It thus follows that the optimizer m∗(α) is nondecreasing in α.7 To summarize,

Corollary 3. In the optimal sequence of Example 1, the number of the center’s successors

m∗(α) is nondecreasing in α for α ∈ (0, 1).

Corollary 3 states that the more important each task is, the fewer successors the center

obtains. Intuitively, if each task is important to the project, then each agent has a relatively

strong incentive to work, and thus, the implicit threat of shirking is not critical in providing

7Since m is an integer, m∗(α) is not necessarily increasing in α.
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Figure 2: Network among Collaborating Teams.

incentives. This means that improving the transparency of actions by creating more succes-

sors is not efficient in reducing incentive costs. In contrast, if each task has little effects on

the project, then it may be profitable to increase the center’s successors.

5 Incentive Design for Collaborating Teams

In this section, we take our analysis further to consider multiple teams collaborating to finish

a joint project. Alternatively, one may interpret the collaboration as organizing a large team

within which multiple sub-teams are each responsible for a different sub-project.

Typically, such collaboration represents a hierarchy in both connection and information:

The leaders of individual teams are also in charge of cross-team coordination, and thus

have an advantage over their team members in observation and inference of other teams’

performances. For example, when multiple research units collaborate on a large scale research

project, the directors of the research units may observe not only the performances of their

colleagues in own groups, but also those of other teams through directors meetings. In this

regard, we model the organization structure in this environment by a network composed of

multiple stars, with all the star centers connected by a complete sub-network, i.e., there is

a link between each pair of centers. Figure 2 illustrates such a network. Let t ≥ 2 be the

number of stars in g, and n̂i ≥ 3 be the number of agents in star i ∈ {1, . . . , t}. Also, let ci

be the center of star i, and C := {ci} ⊂ I be the set of the centers.

To solve for the optimal sequence under such networks, note that it suffices to determine

the order between the centers, and the order of each peripheral agent relative to the center
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of his own star. Given a sequence π, denote by πC the sub-sequence confined to the set C.

Because all the centers are interconnected, by Lemma 1 the centers must move sequentially

within C, i.e., πci 6= πcj for any two stars i 6= j. We say that star i moves before star j if ci

moves before cj, and that an agent moves before (after) star i if he belongs to a star that

moves before (after) star i. In terms of the sequence within each star, provided there is no

confusion, we call a peripheral agent a “predecessor” if he moves before his own center, and

a “successor” if he moves after the center. Clearly, in the optimal sequence, every peripheral

agent is either a predecessor or a successor. Analogous to the single team, let mi ≤ n̂i − 1

be the number of ci’s successors within star i.

Since the network now consists of multiple layers of connection, the internal information

of such an organization can be hierarchical as well. For example, a change in the number of

successors in star i will affect not only the action transparency of the center ci and all the

predecessors in star i, but also that of each agent in the preceding stars, whose action ci can

ultimately learn. Consequently, sequencing in such networks will exhibit a similar cross-star

effect on the agents’ incentives.

Moreover, since the teams may be different in both size and importance, it is remarkably

difficult to pin down the optimal sequence when both kinds of heterogeneity are present.

To distinguish between the effects of team size and that of team importance on the optimal

mechanism, in the following we study each effect separately by fixing the other. Since the

optimal reward scheme follows immediately from Proposition 1 once the optimal sequence

is given, in the subsequent results we omit the optimal reward scheme unless necessary.

5.1 Optimal Mechanisms with Homogeneous Agent Importance

We first study the optimal mechanism under heterogeneous team sizes while assuming that

all the agents are equally important to the project. In this particular case, the probability

of success can be simply written as p(w), where w is the number of working agents.

To characterize the optimal sequence, it is instructive to define analogously the marginal

benefit and the marginal cost of more successors mi in each star i, for a fixed sub-sequence

of the centers πC . As argued previously, the marginal benefit stems from the improvement

in transparency of all the actions that cannot be learned by the new successor until now,

whereas the marginal cost is simply the reward to the new successor. Since the agents are

equally important, the optimal reward to a successor is [p(n)− p(n− 1)]−1 by Proposition 1.

That is, the marginal cost is constant across stars. In contrast, the marginal benefit exhibits

the aforementioned cross-star effect, i.e., increasing mi reduces the rewards of not only ci
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and all the predecessors in star i, but also all the centers and predecessors in the preceding

stars. Clearly, ceteris paribus, the marginal benefit is higher for a star i in a later stage, as

increasing mi can improve the transparency of more actions. Based on these observations,

we show a key property of the relative orders of stars in the lemma below:

Lemma 5. Assume homogeneous agent importance. Suppose in π∗ ci moves before cj, then

(i) if mi > 0, then mj = n̂j − 1; (ii) if mj < n̂j − 1, then mi = 0.

Lemma 5 states that if a star has a nonempty set of successors, then in every star that

moves later all the peripheral agents are successors. In contrast, if a star has a nonempty set

of predecessors, then in each star that moves earlier all the peripheral agents are predecessors.

Intuitively, if it is profitable to make a peripheral agent a successor, then it is more profitable

to make every peripheral agent a successor in each star that moves later, since the marginal

benefit is greater in the latter. On the other hand, if it is unprofitable to make a peripheral

agent a successor, then it is never profitable to have successors in a star that moves earlier.

Lemma 5 implies that in the optimal sequence, there exists at most one star that has both

predecessors and successors. Thus, the teams can be allocated basically into two groups in

the optimal sequence: toward the head of the sequence, in each team every peripheral agent

is a predecessor; toward the end of the sequence, every peripheral agent is a successor.

In addition, we can show that in the first group teams are sequenced in descending order

of size, whereas in the second group teams are sequenced in ascending order. Therefore, the

optimal sequence exhibits a “V-shape” with respect to team size. Specifically,

Proposition 4. Assume homogeneous agent importance. The optimal sequence satisfies that

for any two stars i and j such that i moves before j, (i) if mi = mj = 0, then n̂i ≥ n̂j; (ii)

if mi = n̂i − 1, mj = n̂j − 1, then n̂i ≤ n̂j.

The V-shape pattern of the optimal sequence results from the heterogeneity in a center’s

centrality in the network. By Lemma 5, the actions of each center and each predecessor will

be eventually learned, or simply monitored, by all the subsequent centers and successors.

Thus, by allocating larger size teams toward either end of the sequence, the principal allows

the centers to monitor more predecessors, while in the meantime to be monitored by more

successors, leading to more transparent actions overall. As in a single team, the centers serve

as information intermediaries of the organization; therefore, the V-shape layout enhances

peer monitoring by facilitating the flow of internal information through the centers. Note

that the size of a team here has a one-to-one relation with the betweenness centrality of

its center: the larger the team size, the higher betweenness centrality its center has (while
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each peripheral agent has betweenness centrality 0). Therefore, the above result can also be

interpreted as a non-monotonic correspondence between a team’s role in monitoring and its

center’s centrality: at the principal’s optimum, a team of higher centrality either monitors

more collaborating teams, or is monitored by more collaborating teams.

Whereas Proposition 4 provides only a partial characterization of the optimal sequence,

it rules out most sub-optimal sequences. Specifically, given the number of stars t, there are

totally t! possible permutations of the stars. However, the number of the permutations that

satisfy Proposition 4 is around
∑t

k=0C(t, k) = 2t,8 which is of lower order of t! for large t.

Moreover, one could apply the following algorithm to search the optimal sequence based on

Proposition 4. With a bit abuse of notation, we write MB and MC for the marginal benefit

and the marginal cost of increasing mi, respectively. Recall that MB equals the reduction in

rewards of the agents whose action could not be learned by the new successor before, which

is a function of the total number of current successors,
∑
mi, and that MC is the reward to

the new successor, which is fixed at [p(n)− p(n− 1)]−1. Then, we have:

Corollary 4. Assume homogeneous agent importance. Suppose the optimal sub-sequence πC

has been determined, then π∗ can be fully characterized by the following algorithm:

1. Set each star i such that mi = 0, i ∈ {1, . . . , t};

2. From the last star to the first star in πC, increase mi one by one until

MB
(∑

mi

)
≤MC.

Similar to the single team case, the algorithm in Corollary 4 is derived from the idea that

the marginal benefit is decreasing in the total number of successors
∑
mi. This is again due

to the diminishing marginal effect of action transparency on incentives. In particular, for t

which is not large, the optimal sequence can be easily searched by a two-step algorithm: for

each sub-sequence πC that satisfies Proposition 4, apply the algorithm in Corollary 4; then,

select the sub-sequence that yields the least total rewards in step one.

We have demonstrated the efficiency of Proposition 4 in searching the optimal sequence.

The proposition below can take this one step further by offering upper and lower bounds for

the total number of successors in the optimal sequence. Formally, we have:

8By Lemma 5, we partition the stars into two groups, in the first each peripheral agent is a predecessor,
whereas in the second each peripheral agent is a successor. Let k be the number of stars in the first group.
Then, the sub-sequence πC is given by Proposition 4. The number of possible permutations is thus 2t.
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Proposition 5. Assume homogeneous agent importance. Suppose π∗ contains totally
∑
m∗i

successors. Then, apply the following algorithm:

1. Align the stars in ascending order of n̂i, i ∈ {1, . . . , t};

2. Apply Corollary 4 to this πC, and let m̄ be the associated total number of successors;

1’ Align the stars in descending order of n̂i, i ∈ {1, . . . , t};

2’ Apply Corollary 4 to this πC, and let m be the associated total number of successors.

It follows that m ≤
∑
m∗i ≤ m̄.

Proposition 5 offers an additional restriction for the set of stars that contain successors.

Because there is at most one star that contains both predecessors and successors, the total

number of peripheral agents within such a set is approximately bounded by m and m̄. This

narrows down the possible sets of stars that contain successors. In particular, if m and m̄

are close to each other, then there are relatively few possible permutations of stars.

The idea of Proposition 5 is again attributed to the fact that the effectiveness of action

transparency on incentives is diminishing. Intuitively, by sequencing the stars in ascending

order of size, the principal assigns as many peripheral agents as possible to later stages, and

thus, the agents’ actions are less transparent than they would be in any other sub-sequence

πC given a fixed number of successors. This means that the marginal benefit of increasing mi

is always higher in this sub-sequence than in any other πC , leading to a larger total number

of successors.9 The intuition for the lower bound is analogous.

Presumably, for a large-scale organization, i.e., when both n and t are large, the number

of successors
∑
m∗i might also be a large number. This could lead to an enormous amount

of possible sets of stars that contain successors, making the previous algorithm impractical.

However, the next result shows that under mild conditions—the following Assumption 1 for

example—
∑
m∗i is of lower order of n; that is, the set of successors amounts for only a small

fraction of the entire group of agents. Formally,

Assumption 1. For any positive integer m ≤ n− 1, we have

1

m
[p(n− 1)− p(n−m− 1)] ≥ K[p(n)− p(n− 1)]

for some constant K > 0.

9This does not necessarily mean that the sub-sequence with ascending order of size leads to the optimum.
Note that the notion of marginal benefit is applicable to a given sub-sequence. However, one could improve
the sequence by altering the sub-sequence.
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Assumption 1 states that the marginal productivity of the last piece of effort cannot be

infinitely higher than the average productivity of any preceding efforts, however large n is;

otherwise, the marginal cost of increasing mi may be so low that almost all the peripheral

agents are successors. Given Assumption 1, we have the following proposition:

Proposition 6. Assume homogeneous agent importance. If Assumption 1 holds, then the

optimal sequence satisfies that
∑
m∗i is bounded above by some number of order

√
n.

The proof of Proposition 6 can be sketched in two steps. First, we shall show that given

any number of successors, the marginal benefit in multiple stars is lower than that in a single

star with a same n, if in the former case the number of predecessors plus the number of stars

that have no successors is equal to the number of predecessors in the latter case. Intuitively,

because the multi-star structure has more tiers in connection, the agents’ actions are more

transparent than in a single star. This implies that the marginal benefit is lower, and thus,

there are fewer successors in the multi-star case. Second, we shall prove that the number of

successors in the optimal sequence of a single star is of order
√
n given Assumption 1. This

is because on the one hand a successor has a relatively high reward due to his unobservable

action; on the other hand, the effectiveness of action transparency is diminishing. Thus, the

marginal benefit of increasing successors will be soon outweighed by the marginal cost.

We have shown that when the agents are equally important, the internal information of

the organization has a hierarchical structure. The peripheral agents of teams in later stages

serve as the monitors of the organization, whereas those of teams in earlier stages are simply

monitored by their peers, and the centers serve as information intermediaries through which

the internal information flow. Moreover, Proposition 6 states that the monitors will account

for only a small fraction of the population. The idea is that while peer-monitoring can help

reduce the agents’ incentive costs, the monitors themselves are costly to incentivize because

then no one will monitor the monitor.

5.2 Optimal Mechanisms with Homogeneous Team Size

Now we turn to the organization with heterogeneous agent importance, while assuming that

every team has the same size n̂ ≥ 3. Note that the optimal sequence depends on both the

relative orders between teams and the internal sequence within each team. Accordingly, the

optimal sequence will be affected by not only the importance rank between the agents but

also that between teams. In this regard, we define the importance of each team as follows.

First, for each team i, we denote the k-th important peripheral agent rki , k ≤ n̂− 1. Then,
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for any two teams i and j, we say that star i is more important than star j if (i) ci is more

important than cj and (ii) for all k = 1, · · · , n̂− 1, rki is more important than rkj ; i.e., every

agent of star i is more important than his counterpart in star j. We assume that the teams

are totally ordered with respect to importance. Moreover, we assume that the subsets of I

are totally ordered in importance given the definition in Section 2.

Note that the multi-star network is essentially a combination of the two previous types

of networks: each team is a star on a micro level, while a node of a complete network from

a macro perspective. Thus intuitively, the optimal sequence should exhibit properties of the

optimal sequences of star and complete networks. That is, the principal would conceivably

benefit from making more important agents successors within each star, and letting more

important stars move after less important ones in the entire sequence. It turns out that such

a conjecture is valid under certain conditions, for example, the assumption below:

Assumption 2. For any subsets of agents S, S ′ and T such that S is more important than

S ′ and T ∩ (S ∪ S ′) = ∅, we have

p(S ∪ T )− p(S) ≥ p(S ′ ∪ T )− p(S ′).

Assumption 2 states that the organization’s technology satisfies the complementarity in

importance; that is, the efforts of any set of agents are more productive when the set of the

other working agents becomes more important. It generalizes the notion of complementarity

defined in Section 2, from comparing the marginal effect of adding a single agent to two

sets ordered by inclusion, to comparing that of adding an agent set to two sets ordered by

importance. Then, we have the following result:

Proposition 7. Assume homogeneous team size. The optimal sequence π∗ satisfies that (i)

in every star, each successor is more important than each predecessor; (ii) each successor in

star i is more important than every predecessor in each star that moves after i. Furthermore,

if Assumption 2 holds, then (iii) the stars move in ascending order of importance; thus, m∗i

is nondecreasing along π∗.

The idea of Proposition 7 is as follows. Property (i) is simply a corollary of Lemma 2.

Property (ii) extends the above cross-team effect to heterogeneous team importance: If for

some star i it is profitable to make a peripheral agent, say rki , a successor, then for each star

that moves later, it is more profitable to make every peripheral agent who is more important

than rki a successor. This is because a more important successor in a later team, who incurs
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a lower incentive cost, can impose greater implicit threats on more agents. These results are

extensions of those of complete and star networks, which do not rely on Assumption 2.

However, the property of monotone importance in a single team does not directly apply

to the sequence among multiple teams. In both complete and star networks, a complete im-

portance ranking on individual agents guarantees that the principal benefits from switching

a more important agent with a less important one, should the former move earlier than the

latter in a complete network, or the former be a predecessor whereas the latter a successor

in a star. In contrast, in the multi-star network, switching the orders of two teams means

altering simultaneously the set of monitoring agents and the set of agents being monitored.

For instance, consider two different stars with the same number of successors, one of which

moves before the other. Even if the principal simply swap their orders without changing the

number or successors, it affects the reward needed for each predecessor of each star, along

with the centers, in a way that individual importance ranking alone is not able to capture

with regularity. However, once the importance ranking and complementarity of importance

extend naturally to all sets of agents (Assumption 2), the marginal effect of agent importance

on incentives becomes uniformly diminishing. That is, the reduction in incentive cost for one

agent decreases as those who can learn his action become more important. Thus, it is more

profitable to let the less important star move first so that its predecessors are monitored by

a more important set of agents.

It is worth noting that the diminishing marginal effect of action transparency is indeed

a particular case of that of agent importance. Essentially, an action being more transparent

means that the action can be learned by a more important (in terms of size) set of agents. In

other words, a more transparent action is just a particular type of more influential actions.

Because of the diminishing marginal effect of action influence, in both the single-team and

multi-team cases, the optimal internal information exhibits an balance between the intensive

margin effect (i.e., making one action more influential) and the extensive margin effect (i.e.,

making more actions influential).

One may wonder if there exists a simple algorithm, similar to Corollary 4, to search for the

optimal sequence under heterogeneous agent importance. The difficulty is that we no longer

have the monotonicity of the marginal benefit and the marginal cost of increasing a star’s

successors, even under Assumption 2. For example, it is ambiguous whether making a less

important peripheral agent in a later star a successor is more profitable than making a more

important peripheral agent in a earlier star a successor. Thus, it is very likely that a simple

algorithm to characterize the optimal sequence is only available under certain parametric
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settings. The corollary below characterizes a typical case and the associated algorithm.

Corollary 5. Assuming homogeneous team size and given Assumption 2: Suppose for any

two stars i and j such that i is more important than j, rn̂−1i is more important than r1j , then

π∗ can be fully characterized by the following algorithm:

1. Align the stars in ascending order of importance, and set each star i such that mi = 0;

2. In the last star, make the most important peripheral agent a successor, then the second

important peripheral agent, etc. When every peripheral agent becomes successor, move

backward one star and continue this procedure;

3. Continue until the total rewards start to increase for the first time.

The algorithm is a straightforward variation of that for a single team. The key to it being

effective is that the importance rank should be not only local in each single star, but also

global across stars, which makes the net marginal benefit of locally rearranging agents—in a

one-by-one fashion as specified in the algorithm—strictly monotone. Naturally, this criterion

is met in the two extreme cases: when agents are homogeneous so that they can be ranked

in any arbitrary order, which has been shown previously, and when agents are sufficiently

different so that the importance rank among stars is always consistent with the rank among

individual agents from different stars. A resultant feature of the optimal sequence in these

cases is that there will be at most one star with both predecessors and successors; all stars

moving before it have only predecessors and those after have only successors.

5.3 “Size Effect” vs. “Importance Effect”

In the previous part, we established a unified concept of action influence. An action is more

influential if it can be learned by a set of more important agents. However, the importance

may stem from different sources, having qualitatively different implications on the incentive

design for multi-team collaborations. Specifically, a “more important” team may be placed

either before or after a “less important” one, depending on what actually underlies the notion

of team importance. When a team is more important because of its members’ individual

capability (Section 5.2), more important teams unanimously move later than less important

ones. In contrast, when a team is more important due to larger size (i.e., more members,

Section 5.1), more important teams are located toward both ends of the optimal sequence.

The difference here reflects the interplay between two countervailing effects. The first is a

“size effect”, meaning how large a fraction a team takes up in the total number of agents; the
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second is an “importance effect”, meaning how much a team’s (aggregate) effort influences

the success probability of the whole project. A larger size effect might induce the principal

to make the team move earlier and make its peripheral agents predecessors of the center, so

that more incentive costs can be saved by paying a low reward per agent to more agents.

A larger importance effect, on the other hand, would lead the principal to make the team

move later and make its peripheral agents successors of the center, in order to lower incentive

costs for earlier movers. The second proposition here essentially gives rise to our results on

single-team incentive design.

In the multi-team environment, a more important team given size homogeneity exhibits

a pure importance effect. However, a larger team given agent importance homogeneity has

both a larger size effect and a larger importance effect. In addition, we have shown that

the importance effect diminishes when more teams move in the fashion of all peripheral

agents being successors, which means that the size effect will ultimately dominate given a

sufficiently large total number of agents. As a practical implication from our theory, what

it means to be a more important team can be two-fold and the principal should examine

the notion closely with care before assigning tasks sequentially. The source of the team’s

importance is a non-negligible factor in designing optimal incentives.

6 Conclusion

In this paper, we proposed a tractable framework to study an incentive design problem in

a team where members have access to private internal information about each other’s effort

level. The feasible information architecture is described by an exogenous network, while the

principal may exploit this architecture to minimize total rewards needed by endogenously

determining the work sequence. We find that, both for a single team and for collaborating

teams of the same size, the optimal sequence exhibits a uniform feature of delayed assignment

for more important agents. However, the effect of heterogeneous team sizes is not monotone:

larger teams may perform tasks earlier or later depending on their importance ranking.

Internal information within teams remains an intriguing and promising topic in both

theoretical and empirical economics, and related fields such as operations management and

organization science. Besides hidden action as studied in this paper, the issue of internal

information transparency also interacts with other important economic forces about agents’

private types, knowledge, evolution and updating and so on. For example, consider a scenario

where hidden information and hidden action coexist: the agents in a team may face common
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uncertainty (a state of nature) about the project’s success likelihood mapping, while each of

them receives some private informative signal about the state. In this case, the observation

of a peer’s effort, or lack of effort, reveals information about the peer’s signal and thus the

state. As a perceivable contrast to our results in this paper, the principal would sometimes

implement simultaneous moves, to avoid domino effects of low efforts caused by a possible

unfavorable signal. We expect richer further studies to be conducted, with our work as part

of the groundwork, on revealing relations between the nature of internal information and the

optimal incentive design in a more general and flexible strategic environment.
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A Appendix

A.1 Proofs

Proof of Proposition 1

Proof. Suppose that p satisfies complementarity. We first prove that {π, v∗(π)} is an

EFI mechanism. Consider a strategy profile s∗ such that s∗i = 1 if and only if aj = 1 for

all j ∈ Ni or Ni is empty; that is, an agent works unless he sees someone shirking. This

strategy profile can be sustained by a PBE with the following set of beliefs: if aj = 1 for all

j ∈ Ni or Ni = ∅, then ak = 1 for all k ∈ I\(Ni ∪ {i} ∪Mi); that is, an agent, not seeing

anyone shirking, believes that those whom he cannot see and who cannot see him through

a sequence of agents will exert effort. To verify this statement, note that if agent i shirks,

then by induction every j ∈ Mi shirks as well. In contrast, if i works then he believes that

all the other agents work too unless he sees someone shirking. Suppose i is the first to act,

then he believes that if he works then all the other agents also work, and if he shirks then

he will induce each agent in Mi to shirk. Thus, i prefers working to shirking if and only if

the difference in expected reward exceeds the effort cost, i.e.,

[p(I)− p(I\({i} ∪Mi))]vi ≥ 1. (A.1)

Clearly, v∗i satisfies (A.1). It follows by induction that for all πi ∈ {2, . . . , n}, i prefers to

work on equilibrium path if and only if (A.1) holds, as he sees no one shirking. Off the path,

if i sees a nonempty subset Si ⊆ Ni of agents shirking, then he knows that each j ∈ Si will

induce everyone in Mj to shirk. Let Ri :=
⋃
j∈Si

Mj∪Si be the set of agents whom i believes to

shirk. Thus, if i works then his expected utility equals p(I\Ri)v
∗
i − 1. In contrast, if i shirks

then his expected utility equals p((I\Ri)\({i} ∪Mi))v
∗
i . We now provide a useful lemma.

Lemma A.1. Suppose p satisfies complementarity, then for any two nonempty sets of agents

B, C ⊂ I, we have p(I)− p(I\B) > p(I\C)− p((I\C)\B).

Proof. For two nonempty sets T and S with T ⊂ S and two agents i, j /∈ S, we have

p(S ∪ {i} ∪ {j})− p(S) = p(S ∪ {i} ∪ {j})− p(S ∪ {i}) + p(S ∪ {i})− p(S)

> p(T ∪ {i} ∪ {j})− p(T ∪ {i}) + p(T ∪ {i})− p(T )

= p(T ∪ {i} ∪ {j})− p(T ).
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This implies by induction that for any nonempty set Q ⊂ I with Q ∩ S = ∅ we have

p(S ∪Q)− p(S) > p(T ∪Q)− p(T ). (A.2)

Then, let T = (I\C)\B, S = (I\B), and Q = B. It is obvious that T ⊂ S and Q ∩ S = ∅.
Then, the lemma follows immediately from (A.2).

From Lemma A.1, we conclude that [p(I\Ri)− p((I\Ri)\({i}∪Mi))]v
∗
i < 1. This means

that i prefers to shirk whenever he sees someone shirking. Hence, s∗ and the set of beliefs

that are constructed above indeed constitute a PBE with full efforts.

It remains to show that any alternative reward scheme v′ with v′i < v∗i cannot constitute a

PBE with full efforts. Suppose not, then the probability of success is p(I) on the equilibrium

path. If i shirks unilaterally, then he can at most trigger those in Mi to shirk, irrespective

of the strategy profile. In other words, i’s effort externality is confined to the coalition Mi.

Because p is increasing, the difference in expected reward is less than the effort cost. Thus,

i can make a profitable deviation by shirking, leading to a contradiction. Note that all these

arguments go through for any fixed π, thus statement (1) is proven.

Suppose that p satisfies substitutability. As before, we first prove that {π, v∗(π)} is

an EFI mechanism. Consider a strategy profile s∗ with s∗i ≡ 1, that is, an agent always exerts

effort irrespective of his information set. This strategy profile can be sustained by a PBE

with the set of beliefs that aj = 1 for all j /∈ Ni; that is, an agent believes that those whom

he cannot see will exert effort. Note that if agent i sees no one shirking then he believes that

all the other agents work. Hence, he prefers to work if and only if [p(I) − p(I\{i})]vi ≥ 1,

which holds for v∗i . In contrast, if i sees a nonempty subset of agents Si ⊆ Ni who shirk,

then his expected utility equals p(I\Si)v
∗
i − 1 if he works, and p((I\Si)\{i})v∗i if he shirks.

Then by substitutability, we have p(I\Si) − p((I\Si)\{i}) ≥ p(I) − p(I\{i}). This implies

that i still prefers to exert effort. Thus, s∗ and the set of beliefs constitute a PBE. Finally,

we argue that there does not exist a reward scheme v′ with v′i < v∗i that admits a PBE with

full efforts. Suppose not, then i must prefer working to shirking if he encounters no shirking.

Due to substitutability, if i shirks unilaterally then each j ∈ Mi prefers to work, as argued

above. It follows that the difference in expected reward equals p(I)− p(I\{i}). Because i is

indifferent under v∗i , he must prefer shirking under v′, a contradiction. Thus, v∗(π) is indeed

optimal. In summary, the proposition is proven.
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Proof of Lemma 1

Proof. Suppose not, then π∗i = π∗j . Consider a new sequence π′ which differs from π∗ only

in that j acts in π′ immediately after i and before all the agents who act after i in π∗; thus,

π′j > π∗j and π′k = π∗k for any agent k 6= j. It thus follows that N∗j ⊂ N ′j and M ′
j = M∗

j .

Consider an agent k 6= j. Clearly, if π∗k > π∗j , then M ′
k = M∗

k . If π∗k ≤ π∗j , then we partition

M∗
k into two groups: M∗

k\j and M∗
k\M∗

k\j, where M∗
k\j is the set of agents who will remain

in M∗
k if all j’s links are eliminated and the agents act in the order of π∗. Pick any agent

l ∈M∗
k . If l ∈M∗

k\j, then clearly he will remain in M ′
k under π′. If l ∈M∗

k\M∗
k\j, it must be

that l ∈ M∗
j . Since N∗j ⊂ N ′j and M ′

j = M∗
j , l will still remain in M ′

k, and thus, M∗
k ⊆ M ′

k.

In summary, for any agent k ∈ I, we have M∗
k ⊆ M ′

k, meaning that v∗k(π′) ≤ v∗k(π∗) due to

Proposition 1. But because ij ∈ g and π∗i = π∗j , we have M∗
i ⊂ M ′

i ; thus, v∗i (π′) < v∗i (π∗).

This means that the total payoffs to the agents are strictly lower under π′ than under π∗,

leading to a contradiction. Thus, the lemma is proven.

Proof of Lemma 2

Proof. Because we assume that either i ∈ M∗
j or j ∈ M∗

i , both i’s and j’s neighbors are

nonempty. Thus, there are two cases to consider. First, suppose ij /∈ g, then there exists

some agent l 6= i, j such that il, jl ∈ g and l acts between i and j. Suppose π∗i < π∗l < π∗j ,

then j, l ∈ M∗
i . Now swap i and j and denote the new sequence π′. Therefore, i, l ∈ M ′

j.

Because {k|ik ∈ g, k 6= j} = {k|jk ∈ g, k 6= i}, we have N ′i = N∗j , N ′j = N∗i , M ′
i = M∗

j

and M ′
j ∪ {j} = M∗

i ∪ {i}. Thus, for any agent k 6= i, j, there are three possibilities. First,

i, j /∈ M∗
k . Because N ′i = N∗j and N ′j = N∗i , we have M ′

k = M∗
k . Proposition 1 thus implies

that v∗k(π′) = v∗k(π∗). Second, i ∈M∗
k . In this case, j ∈M∗

k as j ∈M∗
i . Since M ′

i = M∗
j and

M ′
j ∪ {j} = M∗

i ∪ {i}, we have M ′
k = M∗

k , and thus, v∗k(π′) = v∗k(π∗). Third, j ∈ M∗
k and

i /∈ M∗
k . It follows that there exists an agent k′ ∈ M∗

k with ik′, jk′ ∈ g. Then by Lemma 1,

we have π∗i < π∗k′ < π∗j . It follows that M∗
k\{j} = M ′

k\{i}, and thus, we have

p(I\({k} ∪M∗
k )) = p(I\({k} ∪ (M∗

k\{j}) ∪ {j}))

= p((I\({k} ∪ (M∗
k\{j}))\{j})

= p((I\({k} ∪ (M ′
k\{i}))\{j})

> p((I\({k} ∪ (M ′
k\{i}))\{i})

= p(I\({k} ∪ (M ′
k\{i}) ∪ {i})) = p(I\({k} ∪M ′

k)).
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The inequality above is due to that i is more important than j. Then, from Proposition 1,

we have v∗k(π′) < v∗k(π∗). Moreover, because M ′
i = M∗

j , we have

p(I\({j} ∪M∗
j )) = p((I\M∗

j )\{j}) > p((I\M∗
j )\{i}) = p(I\({i} ∪M ′

i)).

It follows from Proposition 1 that v∗i (π′) < v∗j (π∗). Finally, since M ′
j ∪ {j} = M∗

i ∪ {i}, we

have v∗j (π′) = v∗i (π∗). In summary, the total payoff is strictly lower under π′ than under π∗,

leading to a contradiction. Thus, π∗j < π∗l < π∗i .

Second, suppose ij ∈ g, then from Lemma 1, π∗i 6= π∗j ; as such, either i ∈ N∗j or j ∈ N∗i .

Suppose π∗i < π∗j . Again, swap i and j and denote the new sequence π′. Note that we now

have N ′i ∪ {i} = N∗j ∪ {j}, N ′j = N∗i , M ′
i = M∗

j and M ′
j ∪ {j} = M∗

i ∪ {i}. Analogously, the

above argument goes through in this case; thus, we have π∗j < π∗i . To summarize, if in π∗

either i ∈M∗
j or j ∈M∗

i , then π∗j < π∗i . Thus, the lemma is proven.

Proof of Proposition 2

Proof. Because g is a complete network, for any two agents i and j, {k|ik ∈ g, k 6= j} =

{k|jk ∈ g, k 6= i}. Moreover, by Lemma 1, the agents act sequentially in π∗. Thus, we have

either i ∈M∗
j or j ∈M∗

i for any i 6= j. It follows from Lemma 2 that if i is more important

than j, then π∗i > π∗j . By induction, we have that π∗ is identity permutation. The optimal

reward scheme v∗ thus follows immediately from Proposition 1. In particular, if i and j are

equally important, then swapping i and j in π∗ will not change any agent’s incentive cost,

thereby maintaining the optimal sequence. Thus, the proposition is proven.

Proof of Corollary 1

Proof. The corollary follows immediately from Proposition 2 and formula (1).

Proof of Corollary 2

Proof. Let g1 be a complete network and g2 be an arbitrary network with the identical set

of vertices as g1. Suppose π∗(g2) is the optimal sequence for g2. Consider a sequence π(g1)

for g1 such that each agent has the same order in π(g1) as in π∗(g2). By induction, one can

easily show that for each agent i, Mi(π
∗(g2)) ⊆ Mi(π(g1)). Then by Proposition 1, we have

v∗i (π(g1)) ≤ v∗i (π∗(g2)). Because π(g1) is not necessarily optimal, the optimal total payoffs

must be (weakly) lower under g1 than under g2. Thus, the corollary is proven.
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Proof of Lemma 4

Proof. Define ∆MB(m) := MB(m+ 1)−MB(m). By direct calculation, we have

∆MB(m) =
n−3−m∑

i=1

[
1

p(I)− p({j|j < n−m− 1}\{i})
− 1

p(I)− p({j|j < n−m− 2}\{i})

]

−
n−3−m∑

i=1

[
1

p(I)− p({j|j < n−m}\{i})
− 1

p(I)− p({j|j < n−m− 1}\{i})

]
+

[
1

p(I)− p({j|j < n−m− 1})
− 1

p(I)− p({j|j < n−m})

]
+

[
1

p(I)− p({j|j < n−m− 2})
− 1

p(I)− p({j|j < n−m}\{n−m− 2})

]
.

Note that for any fixed i, the difference

1

p(I)− p({j|j < n−m}\{i})
− 1

p(I)− p({j|j < n−m− 1}\{i})

is decreasing in m. This follows from the discussion of formula (1) in the text. Therefore, the

difference between the above two summations is negative. Moreover, the values of the third

and forth bracket in the expression of ∆MB(m) are both negative because p is increasing. It

follows that ∆MB(m) is negative, so MB(m) is decreasing. That MC(m) is nondecreasing

follows from the argument in the text. Thus, the lemma is proven.

Proof of Proposition 3

Proof. The optimal sequence follows immediately from Lemmas 3 and 4. Then, the optimal

reward scheme is given by Proposition 1. To see that m∗ ≤ n− 2, note that

MB(n− 2) =
1

p(I)− p({1})
<

1

p(I)− p(I\{1})
= MC(n− 2).

To prove the last statement of the proposition, note that

MB(0) =
n−2∑
i=1

[
1

p(I)− p({j|j < n}\{i})
− 1

p(I)− p({j|j < n− 1}\{i})

]
+

1

p(I)− p(I\{n})

<
n−2∑
i=1

1

p(I)− p({j|j < n}\{i})
+

1

p(I)− p(I\{n})

<
n− 1

p(I)− p(I\{n})
,
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and that

MC(0) =
1

p(I)− p(I\{n− 1})
.

Let δ = 1
n
; thus, if [p(I)− p(I\{n− 1})] < δ [p(I)− p(I\{n})], then MB(0) < MC(0). This

implies that m∗ = 0. The proposition is thus proven.

Proof of Lemma 5

Proof. We first prove statement (i). Suppose in π∗ we have mi > 0 and mj < n̂j − 1, then

the principal can profit by decreasing mi by 1 and increasing mj by 1. Let the new sequence

be π′, and denote the new predecessor and new successor î and ĵ, respectively. Because the

agents are equally important, we have v∗
î
(π∗) = v∗

ĵ
(π′). Moreover, because the centers move

sequentially and ci moves before cj, we have |M ′
î
| > |M∗

ĵ
|; thus, v∗

î
(π′) < v∗

ĵ
(π∗). In addition,

note that for any agent k other than î and ĵ, |M ′
k| ≥ |M∗

k |. Specifically, if k = cj, or ci /∈Mk

and cj ∈ Mk, then |M ′
k| > |M∗

k |; otherwise, |M ′
k| = |M∗

k |. It follows that v∗k(π′) ≤ v∗k(π∗);

therefore, the total rewards are lower under π′ than under π∗, a contradiction. The proof of

statement (ii) is analogous. Thus, the lemma is proven.

Proof of Proposition 4

Proof. Without loss of generality, let star i moves immediately before star j, i.e., j = i+ 1.

We first prove statement (i). Suppose not, then n̂i < n̂j. Note that for any peripheral agent

î of star i and any peripheral agent ĵ of star j, we have |M∗
î
| = |M∗

ĵ
|+ 1. Now swap stars i

and j with mi and mj both remaining 0. Denote the new sequence π′. Thus, |M ′
ci
| = |M∗

cj
|,

|M ′
cj
| = |M∗

ci
|, |M ′

î
| = |M∗

ĵ
| and |M ′

ĵ
| = |M∗

î
|. For any agent k who belongs to neither star i

nor j, |M ′
k| = |M∗

k |. Then by Proposition 1, the difference in total rewards is given by

V ∗(π′)− V ∗(π∗) =

[
n̂i − 1

p(n)− p(n− 1− |M ′
î
|)

+
n̂j − 1

p(n)− p(n− 1− |M ′
ĵ
|)

]

−

[
n̂i − 1

p(n)− p(n− 1− |M∗
î
|)

+
n̂j − 1

p(n)− p(n− 1− |M∗
ĵ
|)

]
=

n̂j − n̂i

p(n)− p(n− 1− |M∗
î
|)
− n̂j − n̂i

p(n)− p(n− 1− |M∗
ĵ
|)
< 0.

The inequality is due to the monotonicity. Thus, we obtain a contradiction.

Second, we prove statement (ii). Suppose not, then n̂i > n̂j. Now swap stars i and j with
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mi = n̂i − 1 and mj = n̂j − 1. Denote the new sequence π′. Thus, |M ′
ci
| = |M∗

cj
| + n̂i − n̂j

and |M ′
cj
| = |M∗

ci
|. For any other agent k, |M ′

k| = |M∗
k |. Then by Proposition 1, we have

V ∗(π′)− V ∗(π∗) =

[
1

p(n)− p(n− 1− |M ′
ci
|)

+
1

p(n)− p(n− 1− |M ′
cj
|)

]

−

[
1

p(n)− p(n− 1− |M∗
ci
|)

+
1

p(n)− p(n− 1− |M∗
cj
|)

]
=

1

p(n)− p(n− 1− |M ′
ci
|)
− 1

p(n)− p(n− 1− |M∗
cj
|)
< 0.

The inequality is due to the monotonicity and that |M ′
ci
| = |M∗

cj
|+ n̂i− n̂j. Thus, we obtain

a contradiction. In summary, the proposition is proven.

Proof of Corollary 4

Proof. Given the sub-sequence πC , it suffices to show that MB is decreasing in the number

of successors
∑
mi. Fix some

∑
mi ≥ 0, add an extra successor following the algorithm in

Corollary 4. Suppose for some agent j, Mj enlarges due to the increase in successors. Then,

the change in j’s reward, v∗j (
∑
mi + 1)− v∗j (

∑
mi), is given by

1

p(n)− p(n− 1− κ−
∑
mi − 1)

− 1

p(n)− p(n− 1− κ−
∑
mi)

,

where κ is the number of centers in Mj. Then by the discussion of formula (1) in the text,

the above formula is decreasing in
∑
mi. Moreover, as the number of successors increases,

the number of such agent j also decreases. These facts imply that the marginal reduction in

rewards decreases as the number of successors increases; that is, MB is decreasing in
∑
mi.

Because MC is constant, the algorithm is valid. Thus, the corollary is proven.

Proof of Proposition 5

Proof. We show that the upper bound of
∑
m∗i is given by m̄. The proof for the lower bound

is analogous. Pick any two stars i and j such that n̂i > n̂j. Consider two sub-sequences πC
1

and πC
2 with the only difference that ci moves immediately after cj in πC

1 , whereas cj moves

immediately after ci in πC
2 . Then, apply the algorithm in Corollary 4 to πC

1 and πC
2 . The

next lemma shows that for any fixed number of successors
∑
mi ≥ 0, the marginal benefit

in πC
1 , MB1(

∑
mi), is greater than that in πC

2 , MB2(
∑
mi).

35



Lemma A.2. For any integer
∑
mi ≥ 0, MB1(

∑
mi) ≥MB2(

∑
mi).

Proof. First note that for any
∑
mi, if an agent belongs to neither star i nor star j, then he

receives the same reward in both sequences. This implies that we can restrict our attention to

the impacts of
∑
mi on the agents who belong to either star i or star j. For both sequences,

let x be the number of stars after both stars i and j, and y be the total number of peripheral

agents of these stars. We consider three cases. First, when
∑
mi < y+ n̂j − 1, because MC

is constant, MB1(
∑
mi)−MB2(

∑
mi) equals[

V ∗2 (
∑

mi + 1)− V ∗1 (
∑

mi + 1)
]
−
[
V ∗2 (
∑

mi)− V ∗1 (
∑

mi)
]

= (n̂i − n̂j)

[
1

p(n)− p(n− 2− x−
∑
mi)
− 1

p(n)− p(n− 3− x−
∑
mi)

]
− (n̂i − n̂j)

[
1

p(n)− p(n− 3− x−
∑
mi)
− 1

p(n)− p(n− 4− x−
∑
mi)

]
> 0.

The inequality is due to the complementarity and that n̂i > n̂j.

Second, when y + n̂j − 1 ≤
∑
mi < y + n̂i − 1, MB1(

∑
mi)−MB2(

∑
mi) equals[

1

p(n)− p(n− 1− x−
∑
mi)
− 1

p(n)− p(n− 2− x−
∑
mi)

]
− (n̂i −

∑
mi + y − 2)

[
1

p(n)− p(n− 3− x−
∑
mi)
− 1

p(n)− p(n− 4− x−
∑
mi)

]
+ (n̂i −

∑
mi + y − 1)

[
1

p(n)− p(n− 2− x−
∑
mi)
− 1

p(n)− p(n− 3− x−
∑
mi)

]
> 0.

The inequality is due to the monotonicity and the complementarity.

Finally, when
∑
mi ≥ y + n̂i − 1, MB1(

∑
mi)−MB2(

∑
mi) equals[

1

p(n)− p(n− n̂j − x− y)
− 1

p(n)− p(n− n̂i − x− y)

]
−
[

1

p(n)− p(n− n̂j − x− y)
− 1

p(n)− p(n− n̂i − x− y)

]
= 0.

In summary, for any
∑
mi, MB1(

∑
mi) ≥MB2(

∑
mi). Thus, the lemma is proven.

Lemma A.2 implies, by induction, that for any integer
∑
mi, MB(

∑
mi) is the highest

in the sub-sequence in which the stars are aligned in ascending order of size. It follows from

Corollary 4 that the optimal number of successors is the highest in this sub-sequence. This

means that
∑
m∗i ≤ m̄. Thus, the proposition is proven.
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Proof of Proposition 6

Proof. Suppose the optimal sub-sequence of centers has been determined, then the optimal

sequence π∗ can be obtained by applying the algorithm in Corollary 4. Given any number

of successors
∑
mi, let star j be the last star in the sub-sequence such that mj < n̂j − 1. It

follows that for any star k 6= j, mk = 0 if k moves before j or mk = n̂k − 1 otherwise. Thus,

for any agent l 6= cj, either l ∈ Mcj or cj ∈ Ml. Then, re-configure g hypothetically into a

star network such that cj is the center and agent l is cj’s successor (predecessor) if l ∈ Mcj

(cj ∈Ml). Note that if initially cj ∈Ml, then after the re-configuration l’s action is (weakly)

less transparent, i.e., |Ml| is (weakly) lower. It follows from the discussion of formula (1) in

the text that if
∑
mi increases by 1, then the reduction in l’s reward will be (weakly) larger

after the re-configuration than before. This implies that the marginal benefit of increasing∑
mi in the multi-star graph is lower than that of the single star with m =

∑
mi. Because

the marginal cost is the same in both cases, it remains to show that in the optimal sequence

of the single star, m∗ is bounded above by some number of order
√
n. Following Section 4,

we have that MB(m)−MC(m) is given by

n−m− 2

p(n)− p(n−m− 2)
− n−m− 2

p(n)− p(n−m− 3)
+

1

p(n)− p(n−m− 1)
− 1

p(n)− p(n− 1)

=
(n−m− 2)[p(n−m− 2)− p(n−m− 3)]

[p(n)− p(n−m− 2)][p(n)− p(n−m− 3)]
− p(n− 1)− p(n−m− 1)

[p(n)− p(n−m− 1)][p(n)− p(n− 1)]

≤ (n−m− 2)[p(n−m− 2)− p(n−m− 3)]

[p(n)− p(n−m− 2)][p(n)− p(n−m− 3)]
− Km

[p(n)− p(n−m− 1)]

<
(n−m− 2)[p(n−m− 2)− p(n−m− 3)]

[p(n)− p(n−m− 1)][p(n)− p(n−m− 3)]
− Km

[p(n)− p(n−m− 1)]

∝ (n−m− 2)[p(n−m− 2)− p(n−m− 3)]

p(n)− p(n−m− 3)
−Km

=
(n−m− 2)[p(n−m− 2)− p(n−m− 3)]∑m+2

i=0 [p(n− i)− p(n− i− 1)]
−Km

<
(n−m− 2)[p(n−m− 2)− p(n−m− 3)]

(m+ 3)[p(n−m− 2)− p(n−m− 3)]
−Km =

−Km2 − (3K + 1)m+ n− 2

m+ 3
.

The first inequality is due to Assumption 1, and the last inequality is due to complementarity.

Clearly, the positive root of the RHS of the last equality is of order
√
n. Then by (3), the

number of successors in the optimal sequence of this star, m∗, is bounded above by some

integer of order
√
n. It follows from the above argument that the number of successors in the

optimal sequence of the original multi-star network is also bounded above by some integer

of order
√
n. Thus, the proposition is proven.
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Proof of Proposition 7

Proof. First note that property (i) is a corollary of Lemma 2. Suppose property (ii) does

not hold, then in the optimal sequence π∗ there exist a predecessor i and a successor j such

that agent i is more important than agent j and i moves after j’s star. Consider a different

sequence π′ which differs from π∗ only in that i is a successor and j is a predecessor. Because

i is more important than j, v∗i (π′) < v∗j (π∗). Moreover, note that {i}∪M∗
i ⊂ {j}∪M ′

j; thus,

v∗j (π′) < v∗i (π∗). For any agent k 6= i, j, if k’s a successor, then k’s reward is the same in

both π∗ and π′. Suppose k is a predecessor, then for any agent l 6= i, j and l ∈M∗
k , we have

l ∈M ′
k. Moreover, if j ∈M∗

k , then j is replaced by i in M ′
k; if j /∈M∗

k , then we have possibly

i ∈ M ′
k. It follows that v∗k(π′) ≤ v∗k(π∗). In summary, the total rewards are lower in π′ than

in π∗, a contradiction. Thus, a successor is more important than each predecessor in every

star that moves later. If further property (iii) holds, then m∗i is nondecreasing along π∗.

To prove property (iii), suppose in π∗ there exist two stars i and j such that i is more

important than j, and j is immediately after i. By property (i), star i’s (j’s) successors are

its m∗i (m∗j) most important peripheral agents. Let s̄ = max{m∗i ,m∗j} and s = min{m∗i ,m∗j}.
Swap stars i and j such that i and j has now s̄ and s successors, respectively, and every

successor is more important than any predecessor of his star. Denote the new sequence π′.

To compare the total rewards needed in π∗ and π′, we categorize the agents in four groups:

1. All successors except those in stars i and j, and all the agents that move after j in π∗

and i in π′. The rewards to these agents are the same in both π∗ and π′.

2. All the centers and predecessors in the stars that move before star i in π∗ and j in π′.

For each of such agent k, we have |M∗
k | = |M ′

k|. Because star i is more important than

star j, for each agent l ∈M∗
k , either l ∈M ′

k or l is replaced by a more important agent

in M ′
k. Thus, the reward to agent k is lower in π′ than in π∗.

3. ci and cj. First note that |M∗
ci
| = |M ′

cj
|. Because star i is more important than star j,

for each agent k ∈ M∗
ci

, either k ∈ M ′
cj

or k is replaced by a more important agent in

M ′
cj

. Hence, v∗cj(π
′) ≤ v∗ci(π

∗). Note too that for each agent k ∈ M∗
cj

, either k ∈ M ′
ci

or k is replaced by a more important agent in M ′
ci

. Also, ci is more important than cj.

Moreover, when m∗i > m∗j , |M ′
ci
| > |M∗

cj
|. These imply that v∗ci(π

′) < v∗cj(π
∗).

4. The peripheral agents of stars i and j. Choose any two peripheral agents k and l from

stars i and j, respectively, such that they share the same importance rank in own star.

Note that if both k and l are successors in both π∗ and π′, then their rewards do not
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change between π∗ and π′. If both k and l are predecessors in both π∗ and π′, then we

consider two cases. First, if m∗i ≥ m∗j , then v∗k(π∗) + v∗l (π∗)− [v∗k(π′) + v∗l (π′)] equals

1

p(I)− p(I\({k} ∪M∗
k ))

+
1

p(I)− p(I\({l} ∪M∗
l ))

−
[

1

p(I)− p(I\({k} ∪M ′
k))

+
1

p(I)− p(I\({l} ∪M ′
l ))

]
>

1

p(I)− p(I\({k} ∪M∗
k ))

+
1

p(I)− p(I\({l} ∪M ′
k))

−
[

1

p(I)− p(I\({k} ∪M ′
k))

+
1

p(I)− p(I\({l} ∪M ′
l ))

]
. (A.3)

The inequality is because M∗
l = {cj} ∪M∗

cj
and M ′

k = {ci} ∪M ′
ci

, and by part (3) we

have M∗
l is less important than M ′

k. Note that s̄ = m∗i ≥ m∗j = s, thus M∗
k = M ′

l . It

follows that the RHS of (A.3) can be rewritten as

1

p(I)− p(I\({l} ∪M ′
k))
− 1

p(I)− p(I\({l} ∪M∗
k ))

−
[

1

p(I)− p(I\({k} ∪M ′
k))
− 1

p(I)− p(I\({k} ∪M∗
k ))

]
.

Rearranging, this is equal to

p(I\({l} ∪M ′
k))− p(I\({l} ∪M∗

k ))

[p(I)− p(I\({l} ∪M ′
k))][p(I)− p(I\({l} ∪M∗

k ))]

− p(I\({k} ∪M ′
k))− p(I\({k} ∪M∗

k ))

[p(I)− p(I\({k} ∪M ′
k))][p(I)− p(I\({k} ∪M∗

k ))]
. (A.4)

Let S = I\({l} ∪M∗
k ), S ′ = I\({k} ∪M∗

k ) and T = M∗
k\M ′

k. Note that M ′
k ⊂M∗

k and

k is more important than l; thus, {S, S ′, T} satisfies the conditions of Assumption 2.

It follow from Assumption 2 and the monotonicity that (A.4) is positive. This implies

that v∗k(π∗) + v∗l (π∗)− [v∗k(π′) + v∗l (π′)] > 0. Second, if m∗i < m∗j , then (A.3) still holds,

but M∗
k is now less important than M ′

l because some successor in M∗
k is replaced by

a more important successor in M ′
l . This means that the RHS of (A.3) is greater than

(A.4). Note that now M ′
k * M∗

k . If M ′
k is less important than M∗

k , then by the same

argument we have that (A.4) is positive. Otherwise, the LHS of (A.3) is automatically

positive because M ′
l is more important than M∗

l . To summarize, if both k and l are

predecessors in both π∗ and π′, then v∗k(π∗) + v∗l (π∗)− [v∗k(π′) + v∗l (π′)] > 0.

Finally, if k and l have different positions relative to own centers in either π∗ or π′ (i.e.,
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in either π∗ or π′, one of k and l is a predecessor while the other is a successor), then

there are two cases. First, if m∗i > m∗j , then k is a successor while l is a predecessor,

in both π∗ and π′. Thus, v∗k(π∗) = v∗k(π′) and v∗l (π∗) > v∗l (π′). Second, if m∗i < m∗j ,

then k (l) is a predecessor (successor) in π∗ but a successor (predecessor) in π′. Thus,

v∗k(π∗) + v∗l (π∗)− [v∗k(π′) + v∗l (π′)] equals

1

p(I)− p(I\({k} ∪M∗
k ))

+
1

p(I)− p(I\{l})

−
[

1

p(I)− p(I\({k})
+

1

p(I)− p(I\({l} ∪M ′
l ))

]
>

1

p(I)− p(I\({k} ∪M∗
k ))

+
1

p(I)− p(I\{l})

−
[

1

p(I)− p(I\({k})
+

1

p(I)− p(I\({l} ∪M∗
k ))

]
> 0.

The first inequality is because M ′
l = {cj}∪M ′

cj
, by part (3), it is more important than

M∗
k = {ci} ∪M∗

ci
. The second inequality is due to the complementarity in importance.

Therefore, we always have v∗k(π∗) + v∗l (π∗)− [v∗k(π′) + v∗l (π′)] > 0.

In summary, the total rewards are strictly lower in π′ than in π∗, a contradiction. Therefore,

property (iii) is proven. This completes the proof.

Proof of Corollary 5

Proof. Consider a sequence that aligns the stars in ascending order of importance. To prove

that the proposed algorithm identifies the optimal sequence, it suffices to show that if at the

optimum a star i has a predecessor rki , it is never optimal to make any peripheral agent in

any previous star j, who is weakly less important than rki , a successor. This follows from

the proof of Proposition 7. Thus, the corollary is proven.

A.2 Incentive Design under Partially Flexible Task Assignment

In this section, we study team incentive design when task assignment is subject to some

technological constraints so that sequencing must follow certain exogenous configuration. For

example, drug R&D typically follows four main stages: basic research, pre-clinical, clinical

and review by the regulatory agency; in addition, the clinical stage is often subdivided into

Phase I-III trails. Motivated by the applications, we assume, based on our original model,

that the project intrinsically consists of s sequential stages, with 1 ≤ s ≤ n, so that each
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agent performs his task in a prescribed stage. Although the composition of agents is fixed in

each stage, we assume that the sequence within each stage is completely flexible to arrange.

Thus, the internal information of the agents is jointly determined by the network and the

sequence chosen by the principal, subject to the stage constraint. In particular, an agent

can see another agent who is in a preceding stage if they are neighbors.

First, we consider a complete network. By Lemmas 1 and 2, we have that within every

single stage, agents move sequentially and a more important agent moves later. Clearly, no

further improvement can be achieved; thus, we obtain the optimal sequence. In particular,

if each stage consists of uniformly less important agents than those of any later stage, then

the constrained optimal sequence coincides with the unconstrained one.

Then, we consider a single team that is represented by a star. Note that any peripheral

agent belonging to an earlier (resp., later) stage than that of the center will be the center’s

predecessor (resp., successor). Thus, it remains to determine the sequence within the center’s

stage if he is not the only one in this stage. Analogous to Lemma 3, we have that within

the center’s stage, each successor of the center is more important than every predecessor of

the center. With a bit abuse of notation, let m ≥ 0 be the number of the center’s successors

in the center’s stage. Analogously, the marginal benefit of increasing m is the reduction in

the incentive costs of the center and all his predecessors; the marginal cost is the incentive

cost to the additional successor, which is nondecreasing by the same argument in Section

4. As m increases, the actions of the center and his predecessors become more transparent,

so the marginal reduction in incentive cost of each of these agents decreases. Meanwhile,

there are also fewer remaining predecessors. Together, the marginal benefit of increasing m

is decreasing. Thus, we can employ the same algorithm in Section 4 to pin down the optimal

number m∗, with the possibility of boundary solutions.

Finally, we consider multiple collaborating teams that are represented by a multi-star

network as in Figure 2. For tractability, we assume that the agents are equally important

to the project while the teams may differ in size. Moreover, it is practical to preclude the

possibility that an agent is in the same stage as someone from another team, but in a different

stage than someone from his own team. There remain two possibilities. First, suppose that

all teams move sequentially, i.e., every team moves in a different stage. We can then focus

on the agents who are in the same stage of their center. Let mi be number of center ci’s

successors who are in the same stage as ci. Since the agents are equally important, making a

peripheral agent a successor is always more beneficial in a later star than in an earlier star,

which reflects the cross-star effect. As such, letting
∑
mi be the total number of successors
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(of their center) and by an analogous argument to the proof of Corollary 4, we have that the

marginal benefit of increasing
∑
mi is decreasing, while the marginal cost is constant. Thus,

the optimal sequence can be derived by applying the algorithm of Corollary 4 to the agents

who are in the same stage as their center. Of course, the optimal sequence is not necessarily

V-shaped due to the exogenous stage order.

Second, suppose there are multiple teams that are in the same stage. Let Si be the set

of such teams that are in some stage i. Since all the centers are interconnected, Lemma 5

and Proposition 4 directly apply to each Si. Thus, in the optimal sequence there is at most

one stage that includes some center cj and multiple peripheral agents, such that cj moves

between these peripheral agents, and in any earlier star i all the peripheral agents who are in

the same stage as ci move before ci, whereas in any later star k all the peripheral agents who

are in the same stage as ck move after ck. Moreover, if there are multiple stars that belong

to the same stage before (resp., after) that of cj, then these stars are in descending (resp.,

ascending) order of size. In other words, the V-shaped pattern still holds among the stages

that each contains more than one team. To find the optimal sequence, one could employ a

two-step algorithm similar to that in Section 5.1: first, fix an sub-sequence πC such that the

collection of Si satisfies Proposition 4; second, apply the algorithm of Corollary 4 given this

πC , then pick such πC that leads to the minimal total rewards to the agents.

In summary, the main results and the algorithms of our original model are essentially

valid when task assignment is partially flexible due to some technological constraints, and

the principal would prefer to apply these results and algorithms whenever possible.
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