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Abstract

We explore how value chain participants can leverage the potential business value

brought by the network effects of connected products with marginal production

costs. We examine a classic two-tier value chain of a connected product that exhibits

network effects. First, we present a benchmark model of a decentralized value chain

operated through the wholesale price contract and demonstrate how the presence

of network effects improves profitability and efficiency. Next, we explore two repre-

sentative strategies value chain participants can employ to further exploit network

effects: network expansion and engineering network strength. We find that these two

strategies have a complementary relationship as the marginal production cost of the

product declines. Finally, we investigate the impact of adopting these strategies on

the efficiency loss of the decentralized value chain compared to the centralized one.

The results suggest that both strategies could either increase or decrease such effi-

ciency loss, and a decentralized value chain might bring about larger social welfare

under network effects.
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Leveraging Network Effects for Connected Products:

Strategies and Implications for the Value Chain

1 Introduction

Nowadays, an increasing number of hardware devices are equipped with connectivity fea-

tures, thus becoming connected products that exhibit significant network effects (Porter

and Heppelmann 2014, Tien 2015).1 For instance, Apple’s AirTag is designed to be at-

tached to items; if these items are ever lost or stolen, their geographic data can be trans-

mitted to Apple devices nearby through encrypted connections to help locate them.2 The

literature indicates that the widespread use of connected products generally aligns with

Metcalfe’s law (i.e., the value of a network is proportional to the square of the number of

its nodes, Metcalfe 2013), generating network value (Adner et al. 2019) and transforming

businesses (Siebel 2019, p.109). As a result, business strategies for these connected prod-

ucts must adapt to the proliferation of the network effects.

To monetize network effects, conventional wisdom from software literature suggests two

approaches. The first is the “network expansion strategy,” which entails adding more net-

work nodes to generate stronger network effects due to Metcalfe’s law (e.g., Haenlein and

Libai 2017, Gelper et al. 2021). The second is the “connection strengthening strategy,”

which seeks to engineer the strength of network connection to increase its benefit for each

participant (e.g., Aral and Walker 2011, Dou et al. 2013). However, the applicability of

these strategies from the software industry to connected devices remains unclear. First,

1The worldwide number of connected devices is projected to increase to 43 billion by 2023, an almost
threefold increase from 2018. See the following link for more details. https://www.ericsson.com/en/press-
releases/2019/6/ericsson-mobility-report-5g-uptake-even-faster-than-expected.

2https://www.wired.com/story/apple-find-my-cryptography-bluetooth/
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the marginal production cost of such products is significant, making the low-price or even

free strategies for expanding user networks potentially prohibitive. Second, unlike software,

connected products are physical devices that cannot be downloaded or transmitted via

the Internet. They must be delivered through the value chain, as evidenced when Google

sells its smart home devices via Best Buy and Apple sells AirTag through Amazon. Given

this, the interactions between value chain participants will inevitably influence the busi-

ness value of network effects. This raises the central questions of our study: How can value

chain participants of connected products harness the potential value of network effects?

And, how do network effects affect value chain profits and social welfare?

To address these questions, this paper delves into a two-tier value chain of a connected

product that exhibits network effects. We start with two benchmark findings from a base-

line model employing the wholesale price contract: First, as network effects of the product

increases, value chain participants are better off. Second, the efficiency loss caused by the

double marginalization can be eliminated, yet this requires a very strong network effect.

We then explore how value chain participants can take full advantage of network effects.

Specifically, we examine how the value chain can use the two aforementioned strategies:

the network expansion strategy (illustrated by seeding) and the connection strengthening

strategy (represented by investments in engineering network effects).

Our model provides several insights regarding the optimal use of these two strategies.

First, when aiming to expand the network through seeding, it’s crucial for value chain par-

ticipants to precisely identify customer types and target them accurately. If not, the ben-

efits from the seeding strategy might not offset its associated marginal production costs.

We demonstrate that either the manufacturer or the retailer may seed the market in equi-

librium, but not both simultaneously. In such scenarios, the seeding strategy can effec-
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tively lower the threshold for the value chain to achieve efficiency. Second, in terms of

strengthening the connection, we examine when and how much to invest in network fea-

tures to enhance connection strength. Our findings suggest that the optimal investment

might significantly increase if the efficiency of the investment is high and the marginal cost

of product production is low. In essence, production efficiency could trigger a radical in-

vestment into achieving a “disruptive” level of network effects.

We then introduce a generalized setting that simultaneously encompasses the two strate-

gies mentioned above, and demonstrate that all the previous results remain robust. Fur-

thermore, we identify a complementary relationship between these two strategies as the

marginal production cost decreases. To put it differently, if distributing the connected

product for free as a seed remains prohibitively expensive, investing heavily in engineer-

ing network effects might not be optimal either. We also delve into the impact of these

strategies on the efficiency of the decentralized value chain. Our findings indicate that

both strategies could either improve or diminish value chain efficiency. Moreover, while

customer surplus increases with network scale, it isn’t maximized under the central plan-

ner’s profit-maximizing strategy. In essence, the central planner under-invests due to the

positive externalities benefiting customers. Conversely, it’s plausible that the decentralized

value chain, with significant investment in engineering network effects, might yield higher

social welfare than an integrated value chain. Such findings present a novel contribution

to the literature, shedding light on the nuanced impacts of network effects on value chain

management.
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2 Literature Review

This paper intersects with three streams of prior literature. The first stream delves into

the pricing challenges under network effects, a topic widely examined since the seminal

works by Rohlfs (1974) and Varian (2001). When customers are interconnected, an ex-

ternality is created, often prompting price discrimination (e.g., Jing 2007, Chien and Chu

2008). The early adopters bring added value to subsequent users due to Metcalfe’s law

(Metcalfe 2013). This dynamic fosters various freemium strategies, aiming to expand net-

work size using free products and subsequently capitalize on the generated externality

(Jiang and Sarkar 2009, Cheng and Tang 2010). Our paper explores the seeding strategy

(Libai et al. 2005) – where a segment of the potential market accesses the product for free.

From a value chain perspective, we derive several insights on seeding under network ef-

fects. Notably, either the upstream manufacturer or the downstream retailer may deploy

seeding in equilibrium, but not both. While our model resembles the two-tier structure

with network effects in Yi et al. (2019), their focus is primarily on software, sidelining the

marginal cost. In contrast, we emphasize the significance of the marginal production cost,

contending that radical investment in enhancing network effects isn’t optimal if the prod-

uct remains expensive to manufacture.

The second stream focuses on overcoming the double marginalization effects. We intro-

duce leveraging network effects as a novel solution. Acknowledging the implications of di-

verse technologies, existing literature has explored the repercussions of double marginaliza-

tion in varied settings such as performance-based advertising (Dellarocas 2012), word-of-

mouth effects (Han et al. 2021), and software-as-a-service (Demirkan et al. 2010), among

others. Starting with a classic two-tier value chain using the wholesale price contract, our
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paper identifies that network effects could potentially offset the efficiency loss inherent in

such contracts. Furthermore, our generalized model demonstrates that double marginal-

ization can spur upstream product innovation regarding network effects, influencing the

downstream business model (i.e., seeding). Intriguingly, this suggests that double marginal-

ization might inadvertently produce favorable outcomes as a product’s network effects in-

tensify.

Lastly, the third body of literature delves into managing connected products. Although

leveraging data for personalized recommendations and pricing optimizations is prevalent

(Varian 2019), the ripple effects on product development and value chain performance

when products are increasingly interconnected remain underexplored (Hagiu and Wright

2020). Adner et al. (2019) observed that firm boundaries have become increasingly porous,

prompting companies to venture into their value-creation partners’ domains. They propose

a possible “connectivity revolution,” aligning with our findings on the strategy of engineer-

ing network effects. Significantly, our paper posits that this revolution can be spurred by

double marginalization effects, leading to noteworthy repercussions for both value chain

profits and societal welfare. Another relevant study is Sun and Ji (2022), which probes

the ramifications of Internet of Things (IoT) technology in a channel setting. Their study,

however, doesn’t incorporate network effects because the value derived from IoT doesn’t

rely on user base size. In contrast, our analytical framework comprehensively integrates

network effects in both its exogenous and endogenous forms.
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3 The Baseline Model

The Value Chain. Consider a classic value chain with two participants: An upstream

manufacturer (labeled as M , such as Google’s smart home device manufacturer) produces

a product and sells it through a downstream retailer (labeled as R, such as Best Buy).

Each customer demands at most one unit of the product and derives a standalone value

(or “type”), θ, which measures the value of using the product independently from oth-

ers (e.g., playing music from the smart home devices). We assume that θ is uniformly

distributed on the interval [0, 1]. In addition to the standalone value, users also receive

a greater network-based value if there are a larger number of peer users. For example,

users can benefit when Google uses the data contributed from these devices to improve

their performance (e.g., the accuracy of voice recognition improves when data from various

accents are available). Denote such network-based benefit as bN where b is the strength

of the network effect and N is the number of users. Hence, the utility of a type-θ user is

given by:

U(θ;N) := θ + bN − p, (1)

in which p is the market price of the product. Two remarks pertain to Equation (1). First,

the additive form of utility function indicates the separability between the standalone

value (θ) and network effects (bN). Specifically, for the connected product examined in

our paper, the network effects increase with both the connectivity (b) and the network

size (N). Second, Equation (1) implies that the network-based benefits are homogeneous

among users, which aligns with prior literature studying network effects (e.g., Katz and

Shapiro 1985, Dou et al. 2017). 3

3In Appendix E, we consider the multiplicative form of the utility function wherein the network bene-
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Customer Segmentation. We assume that b ∈ (0, 1),4 and that every customer has a

zero-utility outside option. This implies the existence of marginal customers with a cutoff

type θ̂ ∈ [0, 1] who receive a zero utility.5 Therefore, the equilibrium price is p = θ̂ + b(1 −

θ̂). With this one-to-one mapping, optimizing p is equivalent to determining the optimal θ̂.

Value Chain Participants’ Problems. The manufacturer first chooses the wholesale

price, w. The marginal cost of producing the product is c ∈ (0, 1). Subsequently, the re-

tailer purchases from the manufacturer and determines the market price, p. We refer to

this game as the decentralized case. By backward induction, given a particular w, the re-

tailer’s profit is as follows:

ΠR(θ̂;w) := (p− w)N = [θ̂ + b(1− θ̂)− w](1− θ̂). (2)

Solving the retailer’s best response, θ̂(w), we can then deduce the manufacturer’s deci-

sion by choosing the optimal wholesale price w from the profit function below:

ΠM(w) := (w − c)N = (w − c)[1− θ̂(w)]. (3)

A subgame-perfect Nash equilibrium (hereafter referred to as equilibrium for brevity),

{w∗, θ∗(w)}, ensures that each value chain participant maximizes its own profit considering

the other participant’s strategy.

For comparison with the decentralized case, we introduce the centralized case, wherein

the manufacturer and the retailer collaborate as a unified entity (called the “central plan-

ner” and labeled by I) to maximize the combined profit (or “industry profit”).

fits are associated with each user’s standalone value (i.e., U = θ(1 + bN) − p). The results suggest our key
insights remain valid under this multiplicative form. We thank an anonymous reviewer for this suggestion.

4From our subsequent results, if b ≥ 1, the market is always fully covered in equilibrium.
5Given that a customer’s utility increases with her type, if a certain type θ ∈ (0, 1) prefers to buy the

product, all higher types will also choose to do so. Consequently, if the cutoff customer’s type is θ̂, the
equilibrium number of users is N = 1− θ̂ (i.e., the total number of customers with a type exceeding θ̂).
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ΠI := (pI − c)N = [θ̂I + b(1− θ̂I)− c](1− θ̂I). (4)

The equilibrium for each of the two cases described above is detailed in Lemma 1.6

Lemma 1. There exists a unique equilibrium in each case such that:

i. (Centralized case) The central planner’s strategy and the corresponding profit are

{θ̂∗I ,Π∗
I} =






{1+c−2b
2(1−b)

, (1−c)2

4(1−b)
} 0 < b ≤ 1+c

2
;

{0, b− c} 1+c
2

< b < 1.

ii. (Decentralized case) The on-path strategies and the value chain participants’ profits

are

{w∗, θ̂∗D,Π
∗
M ,Π∗

R} =






{1+c
2
, 3+c−4b

4(1−b)
, (1−c)2

8(1−b)
, (1−c)2

16(1−b)
} 0 < b ≤ 3+c

4
;

{2b− 1, 0, 2b− 1− c, 1− b} 3+c
4

< b < 1.

The novelty of our model lies in embracing the impacts of network-based benefits in

the value chain, as captured by b. Lemma 1 demonstrates that both the central planner’s

profit (Π∗
I) and the industry profit in the decentralized case (Π∗

M + Π∗
R) increase with b,

highlighting the favorable role of network effects. More interestingly, as b increases, the

cutoff points, θ̂D and θ̂I , approach zero. This suggests that the value chain, whether cen-

tralized or decentralized, aims to expand the user base as much as possible for profit gen-

eration. With very strong network effects (i.e., b > 3+c
4
), the profit in both cases converges

(i.e., Π∗
M + Π∗

R = Π∗
I) as they both cover the market at the same price.

These findings about user base expansion and profit convergence prompt us to delve

deeper into value chain efficiency. Established literature confirms that in the absence of

6All notation is summarized in Appendix A. Specifically, an asterisk denotes an equilibrium variable.
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network effects (i.e., b = 0), the retailer’s margin is smaller than that of a central planner.

This disparity results from the upward distortion in pricing – known as double marginal-

ization, and leads to a reduced industry profit for the value chain (i.e., efficiency loss).

Given this, how does the presence of network effects affect the role of double marginal-

ization?

To address this question, we begin by establishing a measure for efficiency loss. Since

incremental network effects enhance the potential overall profit, we define the efficiency

loss ratio L by dividing the profit gap by the centralized profit:

L =
Π∗

I − (Π∗
M + Π∗

R)

Π∗
I

= 1− Π∗
M + Π∗

R

Π∗
I

.

Furthermore, the social welfare can be expressed as W =
 1

θ
[θ + b(1− θ)− c] dθ.

Corollary 1 presents the results for efficiency loss and social welfare.

Corollary 1. The equilibria of the centralized and decentralized cases are such that:

i. (Efficiency loss) The efficiency loss ratio is given by

L =






1
4

0 < b ≤ 1+c
2
;

1− 3(1−c)2

16(1−b)(b−c)
1+c
2

< b ≤ 3+c
4
;

0 3+c
4

< b < 1.

ii. (Social welfare) The social welfare is given by

WI =






(1−c)2(3−2b)
8(1−b)2

0 < b ≤ 1+c
2
;

1
2
+ b− c 1+c

2
< b ≤ 1;

WD =






(1−c)2(7−6b)
32(1−b)2

0 < b ≤ 3+c
4
;

1
2
+ b− c 3+c

4
< b < 1.

Figure 1 illustrates the various impacts of network effects as described in Lemma 1 and
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Figure 1: Profits and Efficiency Loss in the Value Chain

Corollary 1. This also serves as a benchmark for our subsequent analysis. A key takeaway

is that efficiency loss can be eliminated if the product exhibits network effects (and the

social welfare also converges) – excellent news for the industry, but only under a consid-

erably large b. Essentially, as network effects emerge, the operational objectives of value

chain participants align more closely: they aim to benefit from network effects by expand-

ing the user base. Prioritizing the acquisition of more customers at a reduced price coun-

teracts the upward price distortion observed in traditional settings without network effects.

While network effects can benefit the value chain, their full potential is only realized

when b is notably large. Can the value chain participants exploit network effects more

proactively rather than merely waiting for b to strengthen? The literature suggests two

approaches. The first is to increase the number of new “nodes” in the network, thereby

enhancing the connections for existing nodes and generating more network effects follow-

ing Metcalfe’s law (e.g., acquiring more users as a larger network values more). The sec-

ond is to intensify the strength of each “edge” in the network, deriving greater value from

each connection (e.g., offering more connectivity-based features). In this paper, we delve

into both strategies. The first, termed “seeding,” involves providing the product for free
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to users who wouldn’t otherwise purchase it (aligning with the first approach mentioned).

The second strategy focuses on investing in connection strength (corresponding to the sec-

ond approach). Through this framework, our goal is to comprehensively understand how

to enhance the network effects’ value for the value chain.

4 Strategies for Leveraging Network Effects

Building on our baseline model in Section 3, this section delves into two approaches to

capitalize on network effects within the value chain.

4.1 Expanding the Network via Seeding

The first approach contemplates the network-expansion method wherein both the manu-

facturer and the retailer proactively give products away for free to bolster the user base.

This is referred to as the “seeding” strategy. Through seeding, the value chain can achieve

a “critical mass” for subsequent purchases, as the network benefits are amplified by the

customers who receive the free product (i.e., “seeded” customers). For example, Amazon

UK gives away Apple’s AirTag for free7 and Apple also gave 20,000 AirTag away in Japan

in 2021.8 Morgan Stanley also suggested that Google distribute free home smart speakers

to grow the network.9

The seeding strategy is built on two main insights. First, a customer should not be

seeded if she is likely to make a purchase anyway. Therefore, to maximize profits in con-

7https://www.manchestereveningnews.co.uk/whats-on/shopping/shoppers-can-free-apple-airtag-
25602619

8https://www.theapplepost.com/2021/12/27/apple-giving-away-free-limited-edition-airtag-with-select-
iphone-purchases-as-part-of-new-japanese-new-year-promo/

9https://www.cnbc.com/2018/06/28/morgan-stanley-google-should-give-out-free-smart-speakers-to-
beat-ama.html
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texts like a fully connected network topology (e.g., the Metcalfe network), it is optimal to

target customers with the lowest types (i.e., a small θ) for seeding. Second, the benefits

of seeding diminish if targeting is costly. To demonstrate the full potential of seeding, we

consider the optimal scenario where the value chain, whether centralized or decentralized,

can target the lowest-type customers for seeding without additional costs.10

First, consider the centralized case. The central planner’s strategy comprises the seed-

ing level αI and the cutoff point θ̂I . The central planner’s profit is given by:

ΠI := [θ̂I + (1− θ̂I + αI)b− c](1− θ̂I)− cαI . (5)

Note that θ̂I ∈ [αI , 1] must hold because all seeds are targeted at customers in the in-

terval [0,αI ]. Compared to Equation (4), introducing αI leads to two changes. On the one

hand, the equilibrium number of users becomes 1− θ̂I + αI , encompassing both the paying

customers, 1 − θ̂I , and the seeded customers, αI . On the other hand, distributing αI units

of the product for free incurs a marginal cost of cαI . The subsequent lemma characterizes

the central planner’s optimal strategy and the associated profit.

Lemma 2. With seeding, the central planner’s optimal strategy is such that:

i. When c < cI , α∗
I =

1−b
2
, θ̂∗I =

1−b
2
, resulting in Π∗

I =
(1+b)2

4
− c;

ii. When c ≥ cI , α∗
I = 0, θ̂∗I =

1+c−2b
2(1−b)

, resulting in Π∗
I =

(1−c)2

4(1−b)
,

where the cutoff is cI := 1− 2(1− b) + (1− b)
3
2 ∈ (0, 1).

Lemma 2 suggests that seeding is profitable (i.e., α∗
I > 0) for the central planner if and

only if c is below the threshold cI . Moreover, the threshold, cI , increases with b, indicating

10Consistent with our intuition, we show in Appendix D that seeding doesn’t improve profits when the
value chain cannot target specific customers. Appendix C examines situations where targeting comes with
additional costs beyond the product’s marginal cost. We thank the anonymous reviewers for suggesting
these perspectives to highlight the limitations of the seeding strategy.
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that seeding becomes more appealing to the central planner as b rises. In stark contrast to

the baseline model without seeding, the market will be fully covered for any b so long as

c < cI (we show later that this is similarly true for the decentralized case). Thus, seeding

acts as a radical and less costly way to expand the consumer network.

Next, we consider the decentralized case where the manufacturer and the retailer make

their strategy decisions sequentially and independently. The manufacturer first chooses a

wholesale price w and a seeding volume αM ∈ [0, 1]; the retailer follows to choose a retail

price p and a seeding volume αR ∈ [0, 1 − αM ].11 Using backward induction, given the

manufacturer’s strategy (αM , w), the retailer maximizes the following profit

ΠR(αR, θ̂D;αM , w) := [(1− b)θ̂D + (1 + αM + αR)b− w](1− θ̂D)− wαR. (6)

Given the retailer’s best responses, the manufacturer chooses the wholesale price w and

the seeding volume αM to maximize the profit

ΠM(αM , w) := (w − c)(1− θ̂D + αR)− cαM . (7)

Lemma 3 below presents the equilibrium outcome.

Lemma 3. With seeding, the equilibrium of the decentralized case is such that:

i. When b > b̂ and c < cR, α∗
M = 0, w∗ = cI , α∗

R = 1−b
2
, θ̂∗D = 1−b

2
, resulting in

Π∗
M = cI − c and Π∗

R = (1+b)2

4
− cI ;

ii. When b ≤ b̂ and c < cM , α∗
M = 3(1−b)

2(2−b)
, w∗ = 1+b

2
, α∗

R = 0, θ̂∗D = 3(1−b)
2(2−b)

, resulting in

Π∗
M = (1+b)2

4(2−b)
− c and Π∗

R = (1−b)(1+b)2

4(2−b)2
;

iii. When c ≥ max{cR, cM}, α∗
M = α∗

R = 0, w∗ = 1+c
2
, θ̂∗D = 3+c−4b

4(1−b)
, resulting in

Π∗
M = (1−c)2

8(1−b)
and Π∗

R = (1−c)2

16(1−b)
,

11That is, we assume that the manufacturer and the retailer can coordinate effectively to avoid double-
seeding the same customer. This represents the ideal scenario for seeding, which we examine as the upper
bound of seeding performance.
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where the cutoffs are b̂ := 9
√
17−17
32

≈ 0.63, cR := max{0, 1 − 4(1 − b) + 2
√
2(1 − b)

5
4}, and

cM := 1− 4(1− b) + 3(1− b)


2−2b
2−b

∈ (0, 1).

Figure 2: Equilibrium Outcomes with Seeding

Figure 2 visualizes when and how the value chain can (further) monetize network ef-

fects by employing seeding to enlarge the user base. When the network effect is relatively

strong (b > b̂), a manufacturer charges a low wholesale price if c < cR, which allows the re-

tailer to seed the customers (referred to as R-seeding). On the other hand, if both the net-

work effect and the marginal cost are relatively low (i.e., b ≤ b̂ and c < cM), the manufac-

turer prefers to seed the customers directly (referred to as M-seeding) and charge a higher

wholesale price. Otherwise, if the marginal cost is sufficiently high (c > max{cR, cM}),

neither the manufacturer nor the retailer have any incentives to seed, in which case the

equilibrium reduces to Lemma 1.

It should be highlighted that our analytical results suggest a very clear structure: It is

never an equilibrium for the manufacturer and the retailer to seed the market simultane-

ously. The intuition is that whenever the retailer decides to seed, it seeds all the remaining
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market. This gives the manufacturer with an incentive to free-ride on the retailer’s seed-

ing.

As a result, the manufacturer faces a tradeoff when choosing its optimal strategy: it

can either directly seed the market and charge a wholesale price 1+b
2

or induce the retailer

to seed, thus saving on the seeding cost by charging a lower price cI < 1+b
2

(i.e., reducing

its margin). The difference 1+b
2

− cI decreases in b and vanishes as b approaches 1. Thus,

the manufacturer prefers R-seeding to M-seeding if and only if b is sufficiently high.

4.2 Engineering Network Effects

The second approach is to strengthen network effects by investing in the connectivity fea-

tures (i.e., engineering network effects). Specifically, either the central planner or the man-

ufacturer can develop new connectivity features, ensuring that each node derives greater

benefits from every connection.

Consider a cost function g(b) = γb2 where γ is the coefficient of marginal innovation

cost for engineering network effects. We assume that γ > 1
2
to ensure a reasonable level

of network effect. Our results are valid for a broad class of the cost function g(b). In line

with the baseline model, we consider b ∈ [0, b̄] with b̄ < 1 and close to 1.

The timeline changes as follows. The producer (i.e., the central planner in the central-

ized case or the manufacturer in the decentralized case) first observes the cost function

g(b) and the marginal cost c ∈ (0, 1); then, the producer chooses a strength of network

effect b ∈ [0, b̄]; finally, given b and c, the game proceeds as in the baseline model.

We follow a similar order to start with the centralized case. We can directly derive the

central planner’s profit (net from the investment) based on Lemma 1:
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ΠI(b) :=






(1−c)2

4(1−b)
− γb2 0<b ≤ 1+c

2
;

b− c− γb2 1+c
2
<b ≤ 1.

Although a closed-form solution isn’t obtainable for all c, Lemma 4 still provides char-

acterization of the optimal strategy and conditions for the central planner.

Lemma 4. When the network effects can be engineered, the central planner’s optimal

strategy is as follows:

i. When c < cIγ, b
∗
I = bhI := 1

2γ
, leading to θ̂∗I = 0 and Π∗

I(b
I
h) =

1
4γ

− c;

ii. When c ≥ cIγ, b
∗
I = blI ∈ (0, bhI ), which is the minimal root of

b(1− b)2 =
(1− c)2

8γ
,

with blI
′
(c) < 0 and blI

′′
(c) > 0. Therefore, θ̂∗I =

1−2blI+c

2(1−blI)
and Π∗

I(b
l
I) =

(1−c)2

4(1−blI)
− γblI

2
.

The cutoff cIγ is a nonincreasing function of γ. If γ < γ̃I for some γ̃I ∈

8
9
, 1

, cIγ > 0 is

the unique root of Π∗
I(b

h
I ) = Π∗

I(b
l
I), which decreases with γ. However, when γ ≥ γ̃I , cIγ ≡ 0

and the equilibrium is always given by item ii.

An implication drawn from Lemma 4 is that the central planner can cover the entire

market only if γ < γ̃I and c < cIγ. Otherwise, employing a lower price to achieve full

market coverage—even with the flexibility of investing in connection strength—is not the

central planner’s optimal strategy.

Next, we consider the decentralized case. The manufacturer’s profit is given by

ΠM(b) :=






(1−c)2

8(1−b)
− γb2 0<b ≤ 3+c

4
;

2b− c− 1− γb2 3+c
4
<b ≤ 1.

17



We denote the optimal decision in the decentralized value chain as b∗D. Lemma 5 that

follows characterizes the equilibrium.

Lemma 5. When the network effect can be engineered, the equilibrium of the decentralized

case is as follows:

i. When c < cDγ , b
∗
D = bhD := b̄. Consequently, w∗ = 2bhD − 1, θ̂∗D = 0, Π∗

M(bhD) =

2bhD − 1− c− γbhD
2
, and Π∗

R(b
h
D) = 1− bhD.

ii. When c ≥ cDγ , b
∗
D = blD ∈ (0, bhD), which is the minimal root of

b(1− b)2 =
(1− c)2

16γ
,

with blD
′
(c) < 0 and blD

′′
(c) > 0. Therefore, w∗ = 1+c

2
, θ̂∗D =

3+c−4blD
4(1−blD)

, Π∗
M(blD) =

(1−c)2

8(1−blD)
− γblD

2
, and Π∗

R(b
l
D) =

(1−c)2

16(1−blD)
.

The cutoff cDγ is a nonincreasing function of γ. If γ < γ̃D for some γ̃D < γ̃I , cDγ > 0 is the

unique root of Π∗
M(bhD) = Π∗

I(b
l
D) and decreases with γ. However, when γ ≥ γ̃D, cDγ ≡ 0 and

the equilibrium is always given by item ii.

Upon closer examination of Lemmas 4 and 5, we observe an intriguing insight: The op-

timal strength of network effects does not shift continuously with its associated marginal

cost, γ. Instead, in either the centralized or decentralized scenario, it may become opti-

mal to make a radical investment for a “disruptive” enhancement of connection strength.

Corollary 2 below summarizes this feature.

Corollary 2. When the network effects can be engineered, the following holds:

i. b∗I decreases in γ and jumps downward at γ = cIγ
−1
(c) if cIγ > 0.

ii. b∗D decreases in γ and jumps downward at γ = cDγ
−1
(c) if cDγ > 0.

18



Based on Corollary 2, we compare the optimal network strength (or investment scales

to engineering network effects) between the centralized and decentralized cases. The com-

parison reveals a counterintuitive finding, presented in Proposition 1.

Proposition 1. When both the coefficient of marginal innovation cost and the marginal

production cost are sufficiently small (i.e., γ < γ̃D and c < min{cIγ, cDγ }), the equilibrium

level of investment in engineering network effects in the decentralized value chain is higher

than the central planner’s choice (i.e., b∗D > b∗I). If γ ≥ γ̃D, then b∗I > b∗D.

The results of Proposition 1 differ significantly from traditional value chain research.

The conventional wisdom is that due to double marginalization, the marginal returns of

investment in a decentralized value chain are always lower than an integrated one. Thus,

the investment level in an integrated value chain is always higher. However, Proposition 1

indicates that this logic does not always hold true in scenarios where network effects can

be engineered. This is because to fully utilize the network effects generated by investment

requires a relatively large user base. In particular, the manufacturer relies on the retailer

to reap the benefit from a larger user base. However, due to double marginalization, the

manufacturer has to charge a lower wholesale price 2b − 1 (i.e., reducing its margin) than

the price b it would charge if it were the central planner to incentivize the retailer to pen-

etrate the market. Consequently, a higher b can raise the manufacturer’s price (and rev-

enue) more than the central planner’s price (and revenue). That is, the marginal profit of

investment of the manufacturer is greater than that of the central planner, i.e.,

Π′
M(b|θ̂∗D = 0) = 2− 2γb > 1− 2γb = Π′

I(b|θ̂∗I = 0).

Consequently, the decentralized value chain invests more radically in the strength of

network effects than the integrated one, a finding that appears novel in the literature.
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5 The Generalized Model

The preceding sections highlight that the emergence of novel data network effects can en-

hance value chain efficiency. To fully leverage these network effects, value chain partici-

pants must not only focus on novel strategies like expanding the user network and inten-

sifying the network effect through investment but also on traditional strategies, such as

improving cost-efficiency in production—a factor that might be easily overlooked.

In this section, we will delve into a generalized model that incorporates both approaches

concurrently. Our goal is to explore the interplay between these methods and to attain a

comprehensive understanding of how the value chain can most efficiently monetize network

effects.

We begin once more with the centralized case. The central planner’s problem is anal-

ogous to Equation (5), but with the distinction that b now becomes a decision variable,

carrying with it an associated cost of γb2. Lemma 6 outlines the central planner’s optimal

strategy.

Lemma 6. In the generalized model, the central planner’s optimal strategy is as follows:

i. When c < cIγ, b
∗
I = bhI := 1

4γ−1
. Consequently, α∗

I = 2γ−1
4γ−1

, θ̂∗I = 2γ−1
4γ−1

, and Π∗
I(b

h
I ) =

γ
4γ−1

− c.

ii. When c ≥ cIγ, b
∗
I = blI ∈


0,

bhI
2


, which is the minimal root of

b(1− b)2 =
(1− c)2

8γ
,

with blI
′
(c) < 0 and blI

′′
(c) > 0. Therefore, α∗

I = 0, θ̂∗I =
1−2blI+c

2(1−blI)
, and Π∗

I(b
l
I) =

(1−c)2

4(1−blI)
− γblI

2
.

The cutoff cIγ > 0 is the unique root of Π∗
I(b

h
I ) = Π∗

I(b
l
I) and decreases with γ.
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The findings in Lemma 6 align with those in Lemma 4, further bolstering the robust-

ness of our earlier conclusions. Additionally, note that seeding is optimal (i.e., α∗
I > 0)

only when c is small (case i), accompanied by the maximum investment in engineering net-

work effects (i.e., b∗I = bhI ). This means that the decrease in marginal cost motivates the

central planner to employ both strategies in conjunction. Moreover, when both strategies

are used, the market is fully covered (i.e., α∗
I = θ̂∗I ), which never happens if c is large (case

ii). In other words, the improvement of production efficiency (i.e., a smaller c) leads to

drastic transformation of the central planner’s strategy – shifting from selling to a portion

of the market with a relatively low b (case ii), to investing heavily in b and using seeds to

fully exploit user base expansion (case i).

Another key observation from comparing Lemmas 4 and 6 is that the strategies for

expanding the network and engineering network effects are complementary. Specifically,

when seeding becomes viable (as per Lemma 6), the constraint on cost-efficiency for mak-

ing radical investments (i.e., γ < γ̃D) disappear. A similar inference can be drawn for the

decentralized scenario when juxtaposing Lemmas 5 and 7.

Lastly, we examine the decentralized case of the generalized model. Lemma 7 below

characterizes the equilibrium results.

Lemma 7. In the generalized model, the equilibrium of the decentralized case is as follows:

i. When γ < γ̂ and c < cRγ , b
∗
D = bhD := b̄. Consequently, α∗

M = 0, w∗ = cI(bhD),

α∗
R =

1−bhD
2

, θ̂∗D =
1−bhD

2
, Π∗

M(bhD) = cI(bhD)− c− γbhD
2
, and Π∗

R(b
h
D) =

(1+bhD)2

4
− cI(bhD).

ii. When γ ≥ γ̂ and c < cMγ , b∗D = bmD ∈ (0, bhD), which is the minimal root of

8γb3 − (32γ − 1)b2 + (32γ − 4)b− 5 = 0,

with bmD
′(γ) < 0 and bmD

′′(γ) < 0. Therefore, α∗
M =

3(1−bmD )

2(2−bmD )
, w∗ =

1+bmD
2

, α∗
R = 0,
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θ̂∗D =
3(1−bmD )

2(2−bmD )
, Π∗

M(bmD) =
(1+bmD )2

4(2−bmD )
− c− γbmD

2, and Π∗
R(b

m
D) =

(1−bmD )(1+bmD )2

4(2−bmD )2
.

iii. When c ≥ max{cRγ , cMγ }, b∗D = blD ∈ (0, bmD), which is the minimal root of

b(1− b)2 =
(1− c)2

16γ
,

with blD
′
(c) < 0 and blD

′′
(c) > 0. Therefore, α∗

M = 0, w∗ = 1+c
2
, α∗

R = 0, θ̂∗D =
3+c−4blD
4(1−blD)

,

Π∗
M(blD) =

(1−c)2

8(1−blD)
− γblD

2
, and Π∗

R(b
D
l ) =

(1−c)2

16(1−bDl )
.

The value of γ̂ is approximately 0.83 and both cRγ and cMγ > 0. When γ < γ̂, cRγ is the root

of Π∗
M(bhD) = Π∗

M(blD) and decreases with γ; when γ ≥ γ̂, cMγ is the root of Π∗
M(bmD) =

Π∗
M(blD) and also decreases with γ.

Similar to our analysis above, the findings of Lemma 7 have a structure analogous to

Lemma 5. However, when considering the seeding strategy and investment of engineering

network effects simultaneously, the decentralized case becomes more complex, with up to

three potential scenarios: Similar to Lemma 6-i, we show that the seeding strategy only

arises when the marginal production cost is sufficiently low (scenario i); However, it re-

mains unknown whether the seeding strategy should be executed by the manufacturer or

the retailer.12 Lemma 7 suggests that it depends on the marginal efficiency of innovation

investment, γ. For a small γ, the manufacturer will focus on investing in network external-

ities and motivates the retailer to expand the market using seeding strategies (i.e., the red

curve falls in the region of R-seeding when c is small in Figure 3a); Conversely, if γ is large

implying that the network effects are not substantially strong, the retailer has insufficient

incentive to employ the seeding strategy. Consequently, the manufacturer has to seed the

market and invest in engineering network effects simultaneously (i.e., the red curve falls in

the region of M-seeding when c is small in Figure 3b). Based on the discussions above, we

12We proved in Lemma 4 that the seeding strategy, when necessary, is carried out by either the manu-
facturer or the retailer, but not both.
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Figure 3: The Optimal Strategy in the Decentralized Case

derive insights on the relationship between the two approaches and present with Proposi-

tion 2 below.

Proposition 2. In the generalized model, both the optimal strength of network effects and

the seeding level decrease in the marginal production cost c. Thus, the two approaches com-
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plement each other as production efficiency changes. Formally we have

∂b∗I
∂c

≤ 0,
∂b∗D
∂c

≤ 0,
∂α∗

I

∂c
≤ 0,

∂α∗
M

∂c
≤ 0,

∂α∗
R

∂c
≤ 0.

Proposition 2 is illustrated by Figure 3, where the curves of optimal b gravitate to-

wards the bottom right corners (as the arrows indicate) as c decreases. As the optimal b

increases horizontally towards the right side, it enters regions where seeding is optimal.

This showcases the complementarity between the two approaches. In summary, Proposi-

tion 2 provides a guideline for value chain participants aiming to optimize both approaches

concurrently: in cases where the cost of seeding is prohibitively high (i.e., a large c), in-

vesting heavily in engineering network effects becomes unprofitable. To fully harness the

potential of network effects, there’s a need for significant efficiency improvement in pro-

duction.

Finally, Proposition 3 suggests that Proposition 1 remains robust in the generalized

model. This can be demonstrated using a similar marginal benefit analysis approach.13

Proposition 3. In the decentralized case, the strength of the networks effects exceeds that

of the centralized case if and only if the equilibrium results in R-seeding. Specifically, when

γ < γ̂ and c < cRγ , we have b∗D > b∗I . For any other admissible pair (γ, c), it follows that

b∗D < b∗I .

6 Implications for Industry Profit and Social Welfare

In the baseline model, we demonstrated the value of network effects in reducing efficiency

loss and improving social welfare (see Corollary 1). Subsequently, in Sections 4 and 5, we

13Details of the proof are available in the Appendix.
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showed that value chain profits can be further enhanced through strategies to leverage net-

work effects (i.e., seeding and/or engineering network effects). However, it remains to be

seen whether these strategies lead to positive impacts on the value chain’s performance

(i.e., industry profit) and social welfare. We address this question in this section.

To begin, we build upon the baseline model by introducing seeding, while keeping b

fixed (as in Section 4.1). Proposition 4 elucidates the effect of seeding on efficiency loss in

the decentralized value chain.

Proposition 4. In contrast to the baseline model, introducing seeding results in non-

monotonic impacts on value chain efficiency. Specifically:

i. When b ≤ b̂ and c ∈ [cM , cI), or b > b̂ and c ∈ [cR, cI), the efficiency loss increases;

ii. When b ≤ b̂ and c < cM , the efficiency loss decreases;

iii. When b > b̂ and c < cR, the efficiency loss is eliminated;

iv. For any other pair (b, c), the seeding strategy has no impact on efficiency loss.

On the one hand, scenario (iii) of Proposition 4 suggests that the previous finding that

the efficiency loss can be eliminated — still holds (i.e., L = 0 in Corollary 1-i when b >

3+c
4
). In fact, the condition for this equilibrium outcome becomes much less restricted, as

the threshold of b drops from 3+c
4

to b̂ ≈ 0.63, which implies that seeding is beneficial for

improving value chain efficiency. This scenario corresponds to the right-bottom corner of

“R-seeding” in Figure 2.

Does introducing seeding always generate positive impacts? No. As scenario (i) of

Proposition 4 reveals, for all values of b, it is possible (depending on c) that double marginal-

ization will lead to a reduced willingness to use the seeding strategy in the decentralized

value chain (compared with the centralized case). This further exacerbates the efficiency
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loss. This is illustrated in the belt-shaped area between the two curves in Figure 2. In this

area, the central planner adopts seeding because c > cI while seeding is not an equilibrium

outcome in the decentralized value chain. To summarize, in the presence of network ef-

fects, double marginalization can result in an “under-seeding” distortion and cause greater

efficiency loss. We depict these changes in efficiency loss with Figure 4 below. The increas-

ing part of the blue curve (i.e., b ∈ (cI
−1
, cM

−1
)) represents the scenario where the effi-

ciency loss worsens (i.e., an increasing L).
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Figure 4: Profits and Efficiency Loss in the Value Chain

Next, we conduct a similar analysis for cases where value chain participants invest

in engineering network effects without seeding, as outlined in Section 4.2. Proposition 5

presents the results.

Proposition 5. The efficiency loss is non-monotonic with respect to γ. Specifically, the

efficiency loss increases with γ when γ < γ̃D and c < min{cIγ, cDγ }, and decreases with γ

when γ ≥ γ̃I .

The non-monotonicity highlighted in Proposition 5 is tied to the gap between invest-
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ment levels of centralized and decentralized cases. Specifically, when innovation is rela-

tively efficient (i.e., γ < γ̃D), both the centralized and decentralized cases will invest

drastically in b such that in equilibrium the market is fully covered. However, as we have

shown in Proposition 1, the manufacturer consistently opts for b̄, while the central planner

will choose 1
2γ
, causing an over-investment (i.e., b̄ − 1

2γ
) which increases in γ (see the left-

hand side of Figure 5a). In contrast, if the innovation is less efficient (i.e., γ ≥ γ̃D), the ex-

tent of over-investment (i.e., blI − blD) in the decentralized case is decreasing in γ, as shown

by Lemmas 4 and 5 and is visualized on the right-hand side of Figure 5a. Therefore, the

comprehensive effect on value chain efficiency loss is portrayed in Figure 5b.
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Figure 5: Investment Level, Profits and Efficiency Loss in the Value Chain

Our final analysis is on the social welfare impacts when the value chain exploits the

network effects with two approaches. We first establish the benchmark of social optimum.

A social welfare maximizer (or the “social planner”) chooses the cutoff θ and the invest-

ment level b to maximize social welfare as defined below:
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W :=

 1

θ

[θ + b(1− θ)]dθ − c(1− θ)− γb2

=


b− 1

2


θ2 − (2b− c)θ + b− γb2 − c+

1

2
.

The next proposition characterizes the socially optimal allocation (b∗S, θ
∗
S).

Lemma 8. The socially optimal allocation is as follows:

(i) When c < cSγ , b
∗
S = bhS := 1

2γ
and θ∗S = 0;

(ii) When c ≥ cSγ , b
∗
S = blS ∈ (0, bhS], which is the minimal root of

b(1− 2b)2 =
(1− c)2

2γ
,

with blS
′
(c) < 0 and blS

′′
(c) > 0. Furthermore, θ∗S =

c−2blS
1−2blS

.

The cutoff cSγ ∈ (0, 1
γ
] is the unique root of W (bhS) = W (blS) and decreases with γ. Specifi-

cally, when γ ≥ 3, cSγ = 1
γ
, and b∗S is continuous in c on (0, 1).

Corollary 3. In the generalized model, the centralized case demonstrates under-investment.

Specifically, for all γ > 1
2
and c ∈ (0, 1), we have b∗I < b∗S. Furthermore, cIγ < cSγ .

Thus, we can compare the optimal degree of network effects obtained from our previ-

ous analysis with the social optimum benchmark above. Proposition 6 provides a counter-

intuitive finding: if the manufacturer is sufficiently efficient in both innovation and produc-

tion, then the decentralized case can yield higher social welfare than the centralized case.

Proposition 6. In the generalized model, the decentralized case yields a higher social wel-

fare than the centralized case if 1
2
< γ <

3+b̄+
√

b̄2−10b̄+9

8b̄
and c < min{cIγ, cRγ }.
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The key takeaway from Proposition 6 is that the advent of network effects can signifi-

cantly alter the conventional understanding that centralized value chains yield higher so-

cial welfare. In the absence of network effects, decentralized value chains tend to overprice,

which reduces market demand and results in lower social welfare. However, with network

effects, attempts to monetize them can lead to additional investment in engineering net-

work effects. As more customers become adopters (either paying or seeded) and derive

added value from network benefits, decentralized value chains may achieve even greater so-

cial welfare. It’s noteworthy that Corollary 1 has shown that, with a fixed b, decentralized

value chains can at best match the social welfare of the centralized case. Thus, Proposition

6 takes this a step further, suggesting that decentralized value chains can surpass central-

ized ones in social welfare when various strategies are employed to harness network effects.

7 Conclusion

As connected products increasingly attract attention from researchers, we are among the

first to investigate their value chain. We find that the network effects among these prod-

ucts have profound impacts. Our analysis provides insights from four angles.

First, as physical products incorporate more connectivity features, the network effects

they generate offer new opportunities for profit. Using the benchmark model (Section 3),

we demonstrate that value chain participants benefit from these network effects. In Sec-

tion 4, we explore two main strategies: 1) seeding to expand the network and 2) invest-

ing to fortify the connection. We present closed-form solutions and optimal conditions for

both strategies, validating their effectiveness with the generalized model (Section 5). No-

tably, we find that employing seeding and investment concurrently can complement each
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other; a substantial investment in engineering network effects is more likely to be optimal

if targeted seeding is attainable. These findings present a comprehensive strategy for value

chain participants to exploit the rising prominence of network effects.

Second, at the industry level, there is encouraging news: strategic coordination is achiev-

able. Traditional products often necessitate intricate contract designs among value chain

members to counteract price distortions and efficiency losses. Contrarily, our results re-

veal that inefficiencies for connected products can be entirely resolved, even under the

wholesale price contract. Furthermore, when network effects are endogenous, the ideal

level might be more pronounced in a decentralized value chain, suggesting a deeper dive

into connectivity features. This stems from manufacturers’ inclination for more potent net-

work effects (compared to the central planner’s preference), allowing for a higher wholesale

price. Clearly, network effects introduce more intricate dynamics within the value chain.

Third, our results underscore the societal benefits of revolutionizing the network effect.

Especially as marginal costs decrease, seeding strategies to amplify the network appear

optimal, driving rapid connectivity innovation. This mirrors observed innovations in fields

like robotic technologies, autonomous driving, and voice assistants. Our model sheds light

on these bold, occasionally unconventional, innovation efforts.

Lastly, the social planning approach is evolving, as indicated in our welfare analysis.

The emerging paradigm suggests that the triumph of connected products hinges on an

initial expansive user network, ultimately favoring the broader market. Crucially, as il-

lustrated in our Proposition 6, welfare in a decentralized scenario can surpass that of a

centralized one.

In summation, our paper paves the way for a promising research trajectory. It will be

enriching to examine data collection and algorithm training from a value chain angle, es-
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pecially when the connected product integrates artificial intelligence modules (Gurkan and

de Véricourt 2022). Other valuable avenues include user privacy issues (Sun and Ji 2022)

and the nuances of network topology (Dou et al. 2013) .
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Appendix

A Notation

b Strength of network effect, b ∈ (0, 1)

c Marginal production cost, c ∈ (0, 1)

w Wholesale price set by the manufacturer

p Market price set by the retailer or the central planner

θ̂ Marginal customer type

αI Seeding level chosen by the central planner

αM (αR) Seeding level chosen by the manufacturer (retailer), αM ,αR ≥ 0 and αM + αR ≤ 1

ΠI Profit of the central planner

ΠM (ΠR) Profit of the manufacturer (retailer)

cI Seeding threshold for the central planner

cM (cR) Seeding threshold for the manufacturer (the retailer)

For endogenous network effects (Sections 4.2, 5 and 6)

γ Coefficient of marginal innovation cost for engineering network effect, γ > 1
2

bI Strength of network effect chosen by the central planner

bD Strength of network effect chosen by the manufacturer

γ̃I Investment threshold for the central planner without seeding

γ̃D Investment threshold for the manufacturer without seeding

γ̂ Investment threshold for the manufacturer in the generalized model

cIγ Full coverage threshold for the central planner given γ with or without seeding

cDγ Full coverage threshold for the manufacturer given γ without seeding

cMγ (cRγ ) Seeding threshold for the manufacturer (the retailer) given γ

L The efficiency loss ratio

W Social welfare, with WI (WD) being that of the centralized (decentralized) case

bS Socially optimal strength of network effect

θS Socially optimal marginal customer type
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B Proofs

Proof of Lemma 1

Proof. We first consider the centralized case. Note that ΠI is strictly concave in θ̂I . Thus,

there are two cases. If θ̂∗I > 0, then the first-order condition implies that θ̂∗I = 1+c−2b
2(1−b)

,

which is positive if b < 1+c
2
; otherwise, θ̂∗I = 0. The remainder of statement (i) is thus

immediate. Next, we consider the decentralized case. Note that given w, the retailer faces

the same problem as the central planner except that the marginal cost equals w. Thus,

analogously, the retailer chooses θ̂D = 1+w−2b
2(1−b)

if b < 1+w
2
, and θ̂D = 0 otherwise. It follows

that the manufacturer’s profit is given by the following function of w.

ΠM(w) =






(w−c)(1−w)
2(1−b)

if w > 2b− 1;

w − c if w ≤ 2b− 1.

Clearly, if w∗ ≤ 2b − 1, then w∗ = 2b − 1 and thus ΠM = 2b − 1 − c. If w∗ ∕= 2b − 1,

then w∗ = 1+c
2

> 2b − 1 always holds, meaning that b < 3+c
4
. It follows that w∗ = 2b − 1 if

b ≥ 3+c
4

and w∗ = 1+c
2

otherwise. Then, the remainder of the lemma is immediate.

Proof of Lemma 2

Proof. Note that at the optimum 1 > θ̂∗I ≥ α∗
I ≥ 0. Thus, the Lagrangian is given by

L = [(1− b)θ̂I + (1 + αI)b− c](1− θ̂I)− cαI + λ(θ̂I − αI) + µαI ,

where λ and µ are the Lagrangian multipliers. Equation (5) implies that the determinant

of the Hessian matrix of ΠI is −b2 < 0; thus, (θ̂I ,αI) cannot be an interior solution. Then,

we need to consider three cases: (i) θ̂∗I = α∗
I = 0, (ii) θ̂∗I = α∗

I > 0, and (iii) θ̂∗I > α∗
I = 0.

The first-order conditions of αI and θ̂I are given by, respectively,

∂L
∂αI

= (1− θ̂I)b− c− λ+ µ = 0, (A.1)

∂L
∂θ̂I

= −2(1− b)θ̂I − (2 + αI)b+ 1 + c+ λ = 0. (A.2)

First, if θ̂∗I = α∗
I = 0, then λ, µ > 0. Adding (A.1) and (A.2) up, we have µ = b− 1 < 0,

a contradiction. Second, if θ̂∗I = α∗
I > 0, then λ > 0 and µ = 0. Adding (A.1) and (A.2) up,

we have θ̂∗I = α∗
I =

1−b
2
. It follows that p∗I =

1+b
2

and Π∗
I =

(1+b)2

4
− c. Third, if θ̂∗I > α∗

I = 0,

then λ = 0 and µ > 0. Solving (A.2), we have θ̂∗I = 1+c−2b
2(1−b)

. Substituting θ̂∗I into (A.1), we

have µ = (2−b)c−b
2(1−b)

. Thus, µ > 0 if c > b
2−b

; if c ≤ b
2−b

, then it must be that θ̂∗I = α∗
I = 1−b

2
.
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When µ > 0 holds, we have p∗I =
1+c
2

and Π∗
I =

(1−c)2

4(1−b)
. It follows that when c > b

2−b
,

(1− c)2

4(1− b)
≥ (1 + b)2

4
− c ⇐⇒ c ≥ cI := 1− 2(1− b) + (1− b)

3
2 ∈ (0, 1).

It can be shown that cI > b
2−b

for b ∈ (0, 1). Thus, if c ≥ cI , then θ̂∗I = 1+c−2b
2(1−b)

and α∗
I =

0; otherwise, θ̂∗I = α∗
I =

1−b
2
. The remainder of the lemma then follows immediately.

Proof of Lemma 3

Proof. As a first step, we prove two useful lemmas.

Lemma A1. Suppose that in equilibrium α∗
M = 0, then

i. When c < cR, w∗ = cI , α∗
R = 1−b

2
and θ̂∗D = 1−b

2
;

ii. When c ≥ cR, w∗ = 1+c
2
, α∗

R = 0 and θ̂∗D = 3+c−4b
4(1−b)

.

Proof. Since αM = 0, the retailer faces the same problem as the central planner in Lemma

2 except that the marginal cost equals w. Thus, given some w, the retailer’s best response

satisfies that if w ≤ cI , αR(w) = 1−b
2

and θ̂(w) = 1−b
2
; otherwise, αR(w) = 0 and θ̂(w) =

1+w−2b
2(1−b)

. It follows that the manufacturer’s profit is given by

ΠM(w|αM = 0) = (w − c)[αR(w) + 1− θ̂(w)] =






(1−w)(w−c)
2(1−b)

if w > cI ;

w − c if w ≤ cI .

Clearly, if w∗ ≤ cI , then w∗ = cI and thus ΠM = cI − c; otherwise, we have to check

whether the unconstrained optimizer, 1+c
2
, is attainable. Note that 1+c

2
> cI if and only if

c > ĉ := 1 − 4(1 − b) + 2(1 − b)
3
2 . It is easy to show that ĉ < cI . Hence, if w > cI , then

w∗ = 1+c
2

and ΠM = (1−c)2

8(1−b)
. Thus, when c > ĉ,

(1− c)2

8(1− b)
≥ cI − c ⇐⇒ c ≥ cR := max{0, 1− 4(1− b) + 2

√
2(1− b)

5
4}.

It can be easily verified that cR < cI . In summary, when c < cR, w∗ = cI , and thus,

α∗
R = 1−b

2
and θ̂∗D = 1−b

2
; when c ≥ cR, w∗ = 1+c

2
, and thus, α∗

R = 0 and θ̂∗D = 3+c−4b
4(1−b)

.

Lemma A2. Suppose that in equilibrium α∗
M > 0, then it must be that c < cM < cI , and

thus, α∗
M = θ̂∗D = 3(1−b)

2(2−b)
, w∗ = 1+b

2
and α∗

R = 0.
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Proof. Given some αM and w, the retailer chooses αR and θ̂D to maximize Equation (6)

subject to that θ̂D ∈ [αM + αR, 1]. The Lagrangian is given by

L = [(1− b)θ̂D + (1 + αM + αR)b− w](1− θ̂D)− wαR + λ(θ̂D − αM − αR) + µαR.

The first-order conditions of αR and θ̂D are given by, respectively,

∂L
∂αR

= (1− θ̂D)b− w − λ+ µ = 0, (A.3)

∂L
∂θ̂D

= −2(1− b)θ̂D − (2 + αM + αR)b+ 1 + w + λ = 0. (A.4)

We consider two cases. First, if αR > 0, then µ = 0. Moreover, note that the determi-

nant of the Hessian matrix of ΠR is −b2 < 0; thus, (θ̂D,αR) cannot be an interior solution.

This means that θ̂D = αM + αR. Substituting and adding (A.3) and (A.4) up, we have

θ̂D = 1−b
2
, which is independent of w and αM . Then, substituting θ̂D and αR into (7), we

have ΠM = (w− c)(1− αM)− cαM . Clearly, the optimal αM is zero. This implies that if in

equilibrium α∗
M > 0, then we must have α∗

R = 0. Since α∗
R = 0, if θ̂ > αM , then by (A.4),

we have θ̂ = 1+w−(2+αM )b
2(1−b)

, which is larger than αM if w > (2− b)αM + 2b− 1, meaning that

if w ≤ (2− b)αM + 2b− 1, then θ̂D = αM . Thus, the manufacturer’s profit is given by

ΠM(w,αM) = (w − c)(1− θ̂D)− cαM =






(w−c)(1−w+bαM )
2(1−b)

− cαM if w > (2− b)αM + 2b− 1;

w(1− αM)− c if w ≤ (2− b)αM + 2b− 1.

Clearly, if w∗ ≤ (2 − b)α∗
M + 2b − 1, then w∗ = (2 − b)α∗

M + 2b − 1. Substituting w∗ into

ΠM and by the first-order condition of αM , we have α∗
M = 3(1−b)

2(2−b)
, and thus, w∗ = 1+b

2
and

Π∗
M = (1+b)2

4(2−b)
− c. If w > (2 − b)αM + 2b − 1, then ΠM = (w−c)(1−w+bαM )

2(1−b)
− cαM ; thus, the

determinant of the Hessian matrix of ΠM is − b2

4(1−b)2
< 0. This means that (w,αM) cannot

be an interior solution. Since w > (2 − b)αM + 2b − 1, αM < θ̂D. Clearly, w
∗ cannot be a

boundary solution, thus it must be α∗
M = 0, a contradiction. Therefore, if α∗

M > 0, then we

must have α∗
M = θ̂∗D = 3(1−b)

2(2−b)
, w∗ = 1+b

2
and α∗

R = 0. It follows that Π∗
M = (1+b)2

4(2−b)
− c.

It remains to show that if α∗
M > 0, then c < cM . From the proof of Lemma A1, we

have that if the manufacturer chooses αM = 0 and w = 1+c
2

> cI , then ΠM = (1−c)2

8(1−b)
. Thus,

the strategy (αM = 0, w = 1+c
2
) is more profitable than (αM = 3(1−b)

2(2−b)
, w = 1+b

2
) if

(1− c)2

8(1− b)
≥ (1 + b)2

4(2− b)
− c ⇐⇒ c ≥ cM := 1− 4(1− b) + 3(1− b)


2− 2b

2− b
.

It can be easily verified that cM < cI . Thus, if in equilibrium α∗
M > 0, then c < cM .
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Lemmas A1 and A2 imply that when c ≥ max{cR, cM}, the equilibrium outcome is

given by α∗
M = 0, w∗ = 1+c

2
, α∗

R = 0 and θ̂∗D = 3+c−4b
4(1−b)

. In contrast, when c < min{cR, cM},
the equilibrium outcome has two candidates:

i. α∗
M = 0, w∗ = cI , α∗

R = 1−b
2

and θ̂∗ = 1−b
2
;

ii. α∗
M = 3(1−b)

2(2−b)
, w∗ = 1+b

2
, α∗

R = 0 and θ̂∗ = 3(1−b)
2(2−b)

.

Note that cR > cM if and only if b > b̂. Thus, when b > b̂, cR > cM and cI − c >
(1+b)2

4(2−b)
− c. This implies that if c ≤ cR, then the manufacturer’s optimal strategy is (α∗

M =

0, w∗ = cI). Consequently, the equilibrium outcome is given by the above (i). In contrast,

when b ≤ b̂, cR ≤ cM and cI − c ≤ (1+b)2

4(2−b)
− c with strict inequality for b > b̂. Thus, if

c ≤ cM , then the manufacturer’s optimal strategy is (α∗
M = 3(1−b)

2(2−b)
, w∗ = 1+b

2
); thus, the

equilibrium outcome is given by the above (ii). Then, the remainder of the lemma follows

immediately.

Proof of Lemma 4

Proof. We consider two cases. First, if b∗I >
1+c
2
, then Π∗

I(b
∗
I) = b− c− γb∗I

2. Since Π∗
I(b

∗
I) is

strictly concave, if c < 1
γ
− 1, then b∗I = 1

2γ
:= bhI ; otherwise, b

∗
I ≤ 1+c

2
. Second, if b∗I ≤ 1+c

2
,

then Π∗
I(b

∗
I) =

(1−c)2

4(1−b∗I )
− γb∗I

2. Thus, the first-order condition of b is

Π∗
I
′(b) =

(1− c)2

4(1− b)2
− 2γb =

2γ

(1− b)2


(1− c)2

8γ
− b(1− b)2


= 0. (A.5)

Note that b(1 − b)2 is single-peaked on [0, b̄] and is (locally) maximized at b = 1
3
, with

a maximum equal to 4
27
. Thus, (A.5) has a solution on [0, b̄] if and only if c ≥ 1 − 4

3


2γ
3
,

which is less than 1
γ
− 1. If c ≤ 1 − 4

3


2γ
3
, then the central planner would choose b̄ > 1+c

2
;

thus, it must be that b∗I = bhI . Suppose c > 1− 4
3


2γ
3
. It follows from (A.5) that if b∗I <

1+c
2
,

then it must be the minimal root of (A.5) on (0, b̄), denoted blI , and that blI < 1
3
< bhI .

Then, applying the implicit function theorem to (A.5), we have

dblI
dc

=
(1− c)(1− blI)

(1− c)2 − 4γ(1− blI)
3
=

1− c

4γ(1− blI)(3b
l
I − 1)

< 0. (A.6)

The second equality is due to (A.5) and the inequality is due to that 0 < blI < 1
3
; thus,

blI
′
(c) < 0. By (A.6), blI

′′
(c) has the same sign as (1 − blI)(1 − 3blI) − (1 − c)(4 − 6blI)b

l
I
′
(c),

which is positive because blI
′
(c) < 0 and 0 < bIl <

1
3
; thus, blI

′′
(c) > 0.

Then, we compare Π∗
I(b

h
I ) with Π∗

I(b
l
I). By the envelope theorem,

dΠ∗
I (b

l
I)

dc
= − (1−c)

2(1−blI)
.

Since c ∈ (0, 1) and blI ∈ (0, 1
3
),

dΠ∗
I (b

l
I)

dc
∈ (−3

4
, 0). Moreover,

d2Π∗
I (b

l
I)

dc2
=

(1−blI)−(1−c)blI
′
(c)

2(1−blI)
2 > 0.
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The inequality is because blI
′
(c) < 0. Thus, Π∗

I(b
l
I) is decreasing and convex in c. Note that

dΠ∗
I (b

h
I )

dc
= −1. Thus, Π∗

I(b
h
I ) and Π∗

I(b
l
I) intersect at most once in terms of c. If c = 0, then

by (A.5), Π∗
I(b

l
I) =

2−3blI
8(1−blI)

2 , which is less than 9
32

since blI < 1
3
. Since Π∗

I(b
h
I ) =

1
4γ
, if γ ≤ 8

9
,

then Π∗
I(b

h
I ) > Π∗

I(b
l
I) at c = 0. On the other hand, for c close to 1, Π∗

I(b
h
I ) < 0 < Π∗

I(b
l
I).

It follows from continuity that Π∗
I(b

h
I ) and Π∗

I(b
l
I) intersect at some cIγ ∈ (0, 1) such that for

all c < cIγ, Π
∗
I(b

I
h) > Π∗

I(b
I
l ) and thus b∗I = bhI ; otherwise, b

∗
I = blI . In contrast, for sufficiently

large γ, say γ ≥ 1, Π∗
I(b

I
h) < Π∗

I(b
I
l ) for all c and thus cIγ = 0. Moreover, by the envelope

theorem,
dΠ∗

I (b
l
I)

dγ
= −blI

2
> −bhI

2
=

dΠ∗
I (b

h
I )

dγ
. It thus follows from the continuity of Π∗

I that

there exists a unique cutoff γ̃I such that cIγ ∈ (0, 1) if γ < γ̃I and cIγ = 0 if γ ≥ γ̃I . In

particular, when cIγ ∈ (0, 1), by the implicit function theorem, we have
dcIγ
dγ

= − bhI
2−blI

2

θ̂∗I (b
l
I ,c

I
γ)
,

where θ̂∗I (b
l
I , c

I
γ) is the cutoff type when b = blI and c = cIγ. Since bhI > blI , we have

dcIγ
dγ

< 0.

Therefore, cIγ is nonincreasing in γ. Specifically, cIγ is decreasing in γ if γ < γ̃I and is fixed

at 0 otherwise. The remainder of the lemma follows immediately.

Proofs of Lemma 5

Proof. We consider two cases. First, if b∗D > 3+c
4
, then Π∗

M(b∗D) = 2b∗D − 1− c− γb∗D
2. Since

Π∗
M(b∗D) is strictly concave, if c < 4

γ
− 3, then b∗D = min{ 1

γ
, b̄}; otherwise, b∗D ≤ 3+c

4
. But if

1
γ
≤ b̄, then Π∗

M(b∗D) = 1
γ
− 1 − c < 0, a contradiction; thus, b∗D = b̄ := bhD only if γ ≤ 1.

Second, if b∗D ≤ 3+c
4
, then Π∗

M(b∗D) =
(1−c)2

8(1−b∗D)
− γb∗D

2. Thus, the first-order condition of b is

Π∗
M

′(b) =
(1− c)2

8(1− b)2
− 2γb =

2γ

(1− b)2


(1− c)2

16γ
− b(1− b)2


= 0. (A.7)

Analogous to the proof of Lemma 4, one can easily show that if b∗D ≤ 3+c
4
, then b∗D

is the minimal root of (A.7), denoted blD, so that blD < 1
3
, blD

′
(c) < 0 and blD

′′
(c) > 0.

Moreover, Π∗
M(blD) is decreasing and convex in c, with

dΠ∗
M (blD)

dc
= − (1−c)

4(1−blD)
> −3

8
, while

dΠ∗
M (bhD)

dc
= −1. Thus, Π∗

M(bhD) and Π∗
M(blD) intersect at most once in terms of c. Sim-

ilarly, we can show that for sufficiently small γ, Π∗
M(bhD) and Π∗

M(blD) intersect at some

cDγ ∈ (0, 1) such that for all c < cDγ , Π
∗
M(bDh ) > Π∗

M(bDl ) and thus b∗D = bhD; otherwise,

b∗D = blD. Moreover, we have
dcDγ
dγ

= − bhD
2−blD

2

θ̂∗D(blD,cDγ )
< 0, where θ̂∗D(b

l
D, c

D
γ ) is the cutoff type

when b = blD and c = cDγ . In contrast, for sufficiently large γ, Π∗
M(bDh ) < Π∗

M(bDl ) for all

c and thus cDγ = 0. In addition, we have
dΠ∗

M (blD)

dγ
= −blD

2
> −bhD

2
=

dΠ∗
M (bhD)

dγ
. It thus

follows from the continuity of Π∗
M that there exists a unique cutoff γ̃D such that cDγ is de-

creasing in γ if γ < γ̃D and is fixed at 0 if γ ≥ γ̃D. Lastly, we show that γ̃D < γ̃I . By the

the proof of Lemma 4, we have γ̃I ≥ 8
9
. Suppose γ = 8

9
and c = 0. It can be shown that

Π∗
M(bhD) = 2b̄ − 1 − γb̄2 ≈ 1

9
whereas Π∗

M(blD) =
(1−c)2

8(1−blD)
− γblD

2 ≈ 0.13 > 1
9
. Since Π∗

M(bhD)
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is steeper than Π∗
M(blD) with respect to c, we have Π∗

M(bhD) < Π∗
M(blD) for all c when γ = 8

9
.

This implies that γ̃D < 8
9
≤ γ̃I .

Proof of Proposition 1

Proof. There are three cases. First, if γ < γ̃D and c < min{cIγ, cDγ }, then b∗D = b̄ > 1
2γ

= b∗I .

Second, if γ̃D ≤ γ < γ̃I and c < cIγ, then b∗D = blD and b∗I = 1
2γ
. By the proof of Lemma 4,

we have blD < 1
3
and γ < 1. Thus, b∗I > b∗D. Finally, if γ̃

D ≤ γ < γ̃I and c ≥ cIγ, or if γ > γ̃I ,

then b∗D = blD and b∗I = blI . It follows from the definitions of blI and blD that blI > blD.

Proof of Lemma 6

Proof. We consider two cases. First, if b∗I > cI
−1
(c), then Π∗

I(b
∗
I) =

(1+b)2

4
− c − γb∗I

2. Since

Π∗
I(b

∗
I) is strictly concave and cI

−1
(c) is increasing, if c < cI

−1
( 1
4γ−1

), then b∗I = 1
4γ−1

:= bhI
and thus Π∗

I(b
h
I ) =

γ
4γ−1

− c; otherwise, b∗I is given by blI characterized in Lemma 4 and thus

Π∗
I(b

l
I) =

(1−c)2

4(1−blI)
− γblI

2
. By the proof of Lemma 4, we have

dΠ∗
I (b

l
I)

dc
> −3

4
> −1 =

dΠ∗
I (b

h
I )

dc
.

Thus, Π∗
I(b

h
I ) and Π∗

I(b
l
I) intersect at most once in terms of c. By Lemma 2, we have that

the central planner prefers seeding to no seeding for c close to 0 and the other way around

for c close to 1. Thus, for any γ > 1
2
, Π∗

I(b
h
I ) and Π∗

I(b
l
I) intersect at some cIγ ∈ (0, 1) such

that for all c < cIγ, Π
∗
I(b

I
h) > Π∗

I(b
I
l ) and thus b∗I = bhI ; otherwise, b

∗
I = blI . Moreover, we

claim that bhI > 2blI . Suppose not, then
bhI
2
≤ blI < cI

−1
(c), and thus,

Π∗
I
′(
bhI
2
) = − 1− c

2(1− bhI
2
)
− 2γ

bhI
2

< −
1− cI(

bhI
2
)

2(1− bhI
2
)
− 2γ

bhI
2

=
32γ − 11

4(8γ − 2)
−


8γ − 3

8γ − 2
. (A.8)

The inequality is due to that cI(
bhI
2
) > c since

bhI
2

< cI
−1
(c). The equality follows from

substituting
bhI
2
. It can be verified that the RHS of (A.8) is negative for all γ > 1

2
. This

means that Π∗
I(b) is decreasing at

bhI
2

∈ (0, blI ], a contradiction. Thus, bIl <
bIh
2
. It follows

from the implicit function theorem that
dcIγ
dγ

= − bhI
2−blI

2

θ̂∗I (b
l
I ,c

I
γ)

< 0, where θ̂∗I (b
l
I , c

I
γ) is the cutoff

type when b = blI and c = cIγ. The remainder of the lemma follows immediately.

Proof of Lemma 7

Proof. We consider three cases. First, if b∗D > max{b̂, cR−1
(c)}, then R-seeding occurs;

thus, Π∗
M(b∗D) = cI(b∗D)− c− γb∗D

2. The first-order condition of b is

Π∗
M

′(b) = 2− 3

2

√
1− b− 2γb = 0. (A.9)
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It can be shown that if γ < 4+
√
7

8
, then Π∗

M
′(b) > 0 on [0, b̄]; thus b∗D = b̄ := bhD. If γ ≥

1, then b∗D is given by the unique root of (A.9), brD :=
32γ−9−3

√
64γ2−64γ+9

32γ2 . It can be verified

that brD is decreasing in γ. Then, by the envelope theorem,
dΠ∗

M (brD)

dγ
= −(brD(γ))

2 ∈ (−1, 0)

and
d2Π∗

M (brD)

dγ2 = −2brD(γ)b
r
D
′(γ) > 0. Note that Π∗

M(bhD) ≈ 1 − c − γ. Thus, Π∗
M(bhD) is

single-crossing Π∗
M(brD) from above at some cutoff of γ such that b∗D = bhD if γ is less than

this cutoff and b∗D = brD otherwise. It follows that Π∗
M(b∗D) is decreasing and convex in γ.

Second, if cM
−1
(c) < b∗D ≤ b̂, then M-seeding occurs; thus, Π∗

M(b) = (1+b)2

4(2−b)
− c − γb2.

The first-order condition of b is

Π∗
M

′(b) =
(1 + b)(5− b)

4(2− b)2
− 2γb = 0. (A.10)

It can be shown that if γ is less than some cutoff γ̃ ≈ 0.7456, then Π∗
M

′(b) > 0 on [0, b̄]

and thus b∗D = b̄. If γ > γ̃, then b∗D is given by the minimal root of (A.10), denoted bmD .

By the envelope theorem,
dΠ∗

M (bmD )

dγ
= −(bmD(γ))

2 < 0 and
d2Π∗

M (bmD )

dγ2 = −2bmD(γ)b
m
D

′(γ) > 0.

Thus, Π∗
M(bmD) is decreasing and convex in γ. Since bmD < b̂,

dΠ∗
M (bmD )

dγ
>

dΠ∗
M (b)

dγ
for all b > b̂

such that R-seeding occurs. This implies that Π∗
M(bmD) is single-crossing either Π∗

M(bhD) or

Π∗
M(brD) from below in terms of γ. It can be shown that Π∗

M(bmD) intersects with Π∗
M(bhD)

at some cutoff γ̂ ≈ 0.826 ∈ (0.7456, 4+
√
7

8
), such that Π∗

M(bmD) < Π∗
M(bhD) if γ < γ̂ and

Π∗
M(bmD) > max{Π∗

M(bhD),Π
∗
M(brD)} if γ > γ̂. Thus, when γ < γ̂, if seeding occurs, then

it is R-seeding and b∗D = bhD; when γ ≥ γ̂, if seeding occurs, then it is M-seeding and

b∗D = bmD . Moreover, when M-seeding occurs, Π∗
M

′(0.5) < 0, meaning that bmD < 0.5.

Then, applying the implicit function theorem to (A.10), we have
dbmD
dγ

= − 4b(2−b)
4γ(2−3b)−1

< 0

and
d2bmD
dγ2 = −8[2γ(2−b)2+4γb2−(1−b)]

[4γ(2−3b)−1]2
< 0 since 0 < bmD < 0.5 and γ > γ̂.

Third, if b∗D < min{cR−1
(c), cM

−1
(c)}, then seeding does not occur; thus, Π∗

M(b∗D) =
(1−c)2

8(1−b∗D)
− γb∗D

2, where b∗D = blD as characterized in Lemma 5. By Lemma 3, we have that

the manufacturer prefers positive seeding to no seeding for c close to 0 and the other way

around for c close to 1. Moreover, by Lemma 5,
dΠ∗

M (blD)

dc
> −1 =

dΠ∗
M (bhD)

dc
=

dΠ∗
M (bmD )

dc
. This

implies that when γ < γ̂, there exists a cutoff cRγ ∈ (0, 1) such that Π∗
M(bhD) > Π∗

M(blD) and

thus b∗D = bhD if c < cRγ , and Π∗
M(bhD) ≤ Π∗

M(blD) and thus b∗D = blD if c ≥ cRγ . Similarly,

when γ ≥ γ̂, there exists a cutoff cMγ ∈ (0, 1) such that b∗D = bmD if c < cMγ and b∗D = blD if

c ≥ cMγ . By the envelope theorem, we have
dcRγ
dγ

= − bhD
2−blD

2

θ̂∗I (b
l
D,cRγ )

< 0, where θ̂∗D(b
l
D, c

R
γ ) is the
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cutoff type when b = blD and c = cRγ . Note that when γ ≥ γ̃D, for all c ≥ cM(bmD), we have

Π∗
M

′(bmD) <
(1− cM(bmD))

2

8(1− bmD)
2

− 2γbmD = 2 +
9(1− bmD)

4(2− bmD)
− 3


2(1− bmD)

2− bmD
− 2γbmD

< 2 +
9(1− bmD)

4(2− bmD)
− 3 · 2(1− bmD)

2− bmD
− 2γbmD <

(1 + bmD)(5− bmD)

4(2− bmD)
2

− 2γbmD = 0.

The first inequality is because c ≥ cM(bmD); the second is because 2(1 − bmD) < (2 − bmD);

and the third is because bmD < 0.5. Thus, Π∗
M

′(bmD) < 0, meaning that blD < bmD . It follows

that
dcMγ
dγ

= − bmD
2−blD

2

θ̂∗I (b
l
D,cMγ )

< 0, where θ̂∗D(b
l
D, c

R
γ ) is the cutoff type when b = blD and c = cMγ .

The remainder of the Lemma follows immediately.

Proof of Proposition 2

Proof. Proposition 2 is a simple corollary of Lemmas 6 and 7.

Proof of Proposition 3

Proof. That when γ < γ̂ and c < cRγ , b
∗
D > b∗I follows immediately from Lemmas 6 and 7.

The remainder has three parts. First, we claim that blD < blI . To show this, compare (A.5)

with (A.7). Note that b(1 − b)2 is increasing and concave on [0, 1
3
]. Since bDl , b

I
l < 1

3
, it is

easy to show that given c and γ, blD <
blI
2
. Second, we claim that bDh <

5bIh
6
. To show this,

substituting
5bIh
6

into Πm
M

′(b), we have Πm
M

′


5bIh
6


= (24γ−1)(120γ−35)

4(48γ−17)2
− 10γ

24γ−6
. It follows that

the RHS is negative for all γ > 0.8. Since γ > γ̂, we have bDh <
5bIh
6
. Third, we claim that

for all γ > γ̂, cMγ < cIγ. To see this, note that cMγ
′
(γ) = − bmD

2−blD
2

θ̂∗I (b
l
D,cMγ )

and cI
′

γ (γ) = − bhI
2−blI

2

θ̂∗I (b
l
I ,c

I
γ)
.

Since bIl <
bIh
2
and bDh <

5bIh
6
, the difference between the numerators equals

(bmD
2 − blD

2
)− (bhI

2 − blI
2
) < bmD

2 + blI
2 − bhI

2
<


5bhI
6

2

+


bhI
2

2

− bhI
2
= −bhI

2

18
< 0.

Moreover, the difference between the denominators is given by

3 + cMγ − 4blD
4(1− blD)

−
1 + cIγ − 2blI
2(1− blI)

>
3 + cMγ − 4blI
2(1− blI)

−
1 + cIγ − 2blI
2(1− blI)

>
cMγ − cIγ
2(1− blI)

. (A.11)

The first inequality is due to that blD < blI and the first term is decreasing in b; the

second is due to that θ̂∗D > θ̂∗I when seeding occurs in neither case. Since blI , b
l
D → 0 as

γ → ∞, by the definitions of cMγ and cIγ, we have that cMγ , cIγ → 0, as γ → ∞. This implies

that the difference between the denominators is positive for sufficiently large γ. It follows
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that cMγ
′
(γ) < cI

′
γ (γ), and thus, cMγ < cIγ for sufficiently large γ. Suppose there exists a γ′ >

γ̂ such that cMγ = cIγ, then we must have cMγ
′
(γ′) > cI

′
γ (γ

′). But then the RHS of (A.11)

equals 0, i.e., the difference between the denominators is still positive. Thus, cMγ
′
(γ′) <

cI
′

γ (γ
′), a contradiction. Then, by the continuity of cMγ and cIγ, for all γ > γ̂, cMγ < cIγ. It

follows that when γ ≥ γ̂, if c < cIγ, then b∗D equals either bmD or blD, while b∗I = bhI , and thus,

bD < bI . If c ≥ cIγ, then b∗D = blD < blI = b∗I . Lastly, when γ < γ̂ and c ≥ cRγ , b
∗
D = blD, while

b∗I equals either bhI or blI . Since blD < blI < bhI , we have b∗D < b∗I .

Proof of Proposition 4

Proof. Proposition 4 is a simple corollary of Lemmas 1, 2 and 3.

Proof of Proposition 5

Proof. Let Π∗
D = Π∗

M + Π∗
R. It follows that

∂L
∂γ

has the same sign as Π∗
DΠ

∗′
I − Π∗

IΠ
∗′
D. We

consider two cases. First, if γ < γ̃D and c < min{cIγ, cDγ }, then b∗I = 1
2γ

and b∗D = b̄. It can

be shown that in this case Π∗
DΠ

∗′
I − Π∗

IΠ
∗′
D = (2γ−1)[1−c(1+2γ)]

4γ2 > 0. The inequality is because

γ > 1
2
and Π∗

I = 1
4γ

− c > 0. Thus, the efficiency loss is increasing in γ. Second, if γ ≥ γ̃I ,

then by Lemmas 4 and 5, b∗I = blI and b∗D = blD. By the envelope theorem, we have

Π∗
DΠ

∗′
I − Π∗

IΠ
∗′
D =

(1− c)2[4blD
2
(1− blD)− 3blI

2
(1− blI)]

16(1− blI)(1− blD)
.

By the definition of blI and blD, we have blI > blD and blI(1− blI)
2 = 2blD(1− blD)

2. Substi-

tuting this equation into above, Π∗
DΠ

∗′
I − Π∗

IΠ
∗′
D has the same sign as

2(1−blI)b
l
D

1−blD
− 3blI , which

is negative since blI > blD. Thus, the efficiency loss is decreasing in γ.

Proof of Lemma 8

Proof. Given W , we have ∂W
∂b

= (1 − θ)2 − 2γb and ∂W
∂θ

= (2b − 1)θ − (2b − c). We claim

that b∗S ≤ 1
2γ
. Suppose not, then b∗S > 1

2γ
. Since (1 − θ)2 ≤ 1,

∂W (b∗S)

∂b
< 0, a contradiction.

It is easy to show that θ∗S = 0 if and only if b∗S = bhS := 1
2γ
. Moreover, if θ∗S = 0, then c ≤ 1

γ
.

Thus, if c > 1
γ
, we have θ∗S > 0. Then, by the first-order condition of θ, we have b∗S < 1

2
. It

follows that b∗S = 1
2γ


1−c

1−2b∗S

2

and θ∗S =
c−2b∗S
1−2b∗S

. Substituting θ = c−2b
1−2b

into ∂W
∂b

, we have

∂W

∂b
=

2γ

(1− 2b)2


(1− c)2

2γ
− b(1− 2b)2


. (A.12)

Note that b(1 − 2b)2 is single-peaked on [0, 1
2
] and is (locally) maximized at b = 1

6
, with
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a maximum equal to 2
27
. Thus, (A.12) has a root on [0, 1

2
] if and only if c ≥ 1− 2

3


γ
3
, which

is less than 1
γ
. Thus, when c > 1

γ
, (A.12) has two roots on (0, 1

2
). In particular, b∗S is given

by the smaller root, denoted blS, such that blS < 1
6
. Then, by the implicit function theorem,

we have
dblS
dc

= − 1−c
γ(1−2blS)(1−6blS)

< 0 since blS < 1
6
. It follows that blS

′′
(c) has the same sign

as (1 − 2blS)(1 − 6blS) − (1 − c)(8 − 24blS)b
l
S
′
(c), which is positive since blS

′
(c) < 0 and

blS < 1
6
. Thus, blS

′′
(c) > 0. By the envelope theorem, we have

dW (blS)

dc
= θ − 1 ∈ (−1, 0), and

d2W (blS)

dc2
=

1−6blS+2c−2(1−2blS)b
l
S
′
(c)

(1−2blS)
2 > 0 since blS

′
(c) < 0 and blS < 1

6
. Thus, W (blS) is decreasing

and convex in c. It is also easy to show that W (blS) → 0 as c → 1.

Then, consider when c ≤ 1
γ
. There are two cases. First, suppose γ < 3. If c < 1− 2

3


γ
3
,

then (A.12) has no root, meaning that W (bhS) > W (blS). Since W (bhS) =
1
4γ

− c+ 1
2
, we have

dW (bhS)

dc
= −1, and W (bhS) < 0 for c close to 1. It follows that W (bhS) intersects with W (blS)

from above at some cSγ ∈ (0, 1) in terms of c. In addition, note that if c = 1
γ
, then γ > 1

and (A.12) can be rewritten as

∂W

∂b
= − 2γ

(1− 2b)2


b− 1

2γ


b− 1

2
+

1 +
√
4γ − 3

4γ


b− 1

2
− 1 +

√
4γ − 3

4γ


. (A.13)

It follows that when γ < 3, blS = 1
2
− 1+

√
4γ−3
4γ

< bhS, and W ′(b) ≥ 0 on [0, blS] and

W ′(b) ≤ 0 on [blS, b
h
S]. Thus, when c = 1

γ
, W (bhS) < W (blS). This implies that cSγ < 1

γ
. In

summary, when γ < 3, b∗S = bhS and θ∗S = 0 if c < cSγ , and b∗S = blS and θ∗S =
c−2blS
1−2blS

otherwise.

By the envelope theorem, we have
dcSγ
dγ

= − bhS
2−blS

2

θ∗S(b
l
S)

< 0. Second, suppose γ ≥ 3. (A.13)

implies that when c = 1
γ
, blS = 1

2γ
= bhS. It follows that when γ ≥ 3 and c = 1

γ
, b∗S = bhS.

Next, consider c < 1
γ
. Suppose b∗S = blS. Since blS

′
(c) < 0, we have blS(c) > blS(

1
γ
) = 1

2γ
. This

leads to a contradiction since b∗S ≤ 1
2γ
. Thus, b∗S = bhS. In summary, when γ ≥ 3, b∗S = bhS

if c < 1
γ
and b∗S = blS otherwise; thus, cSγ = 1

γ
and b∗S is continuous in c on (0, 1). It follows

from the continuity of W that cSγ is continuous at γ = 3. Indeed, it can be shown that if
1
2
< γ < 3, then cSγ = 4−

√
6γ−2
3

+ (
√
6γ−2−1)3

27γ
; if γ ≥ 3, cSγ = 1

γ
. Thus, cSγ decreases with γ.

Proof of Corollary 3

Proof. By Lemmas 6 and 8, we have bhI < bhS and it is also easy to show that blI < blS. By

Lemma 6, we have cIγ ≤ cI(bhI ) =


4γ−2
4γ−1

 3
2 − 4γ−3

4γ−1
. It follows from the proof of Lemma 8

that cIγ < cSγ for all γ > 1
2
. Since blI < bhI , if c < cIγ, then b∗I = bhI < bhS = b∗S; if c ∈ [cIγ, c

S
γ ),

then b∗I = blI < bhS = b∗S; if c ≥ cSγ , then b∗I = blI < blS = b∗S.
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Proof of Proposition 6

Proof. By Lemma 8 and Corollary 3, when c < min{cIγ, cRγ } < cSγ , b
∗
S = 1

2γ
and θ∗S = 0.

In addition, by Lemmas 6 and 7, b∗I = 1
4γ−1

and θ̂∗I = 0, and b∗D = b̄ and θ̂∗D = 0. It

follows that |b∗D − b∗S| < |b∗S − b∗I | if and only if
3+b̄−

√
b̄2−10b̄+9

8b̄
< γ <

3+b̄+
√

b̄2−10b̄+9

8b̄
. It

is easy to verify that the LHS is less than 1
2
given that b̄ < 1, and the RHS is less than γ̂

for b̄ close to 1, meaning that R-seeding indeed occurs in the decentralized case. Since W

is strictly concave in b and is maximized at b∗S = 1
2γ
, the decentralized case yields higher

social welfare if 1
2
< γ <

3+b̄+
√

b̄2−10b̄+9

8b̄
.

C Costly Targeting

In this section, as an extension, we consider when firms incur additional costs to seed the

customers, for example the relevant marketing costs. Specifically, we assume that each of

the central planner and the value chain participants incurs a unit seeding cost k > 0 on

top of the cost of the product c and w, respectively. The analysis is analogous to that in

the main body. Thus, we only present relevant results here.

C.1 Exogenous Network Effects

We first consider when b ∈ (0, 1) is fixed. We start with the centralized case. The central

planner’s profit is given by ΠI = [(1 − b)θ̂ + (1 + α)b − c](1 − θ̂) − (c + k)α. The lemma

below characterizes the central planner’s optimal strategy.

Lemma A3. With seeding cost k, the central planner’s optimal strategy satisfies that

i. When c < cIk, α
∗
I = θ̂∗I = max{0, 1−k−b

2
}, thus, Π∗

I = θ̂∗
2

I + b− c;

ii. When c ≥ cIk, α
∗
I = 0, θ̂∗I =

1+c−2b
2(1−b)

, thus, Π∗
I =

(1−c)2

4(1−b)
,

where the cutoff cIk := max{0, 1− 2(1− b) + (1− k − b)
√
1− b, 2b− 1}.

Lemma A3 indicates that the results of Lemma 2 are robust to small perturbation of

k. As it becomes more costly, seeding occurs less often in the centralized case, i.e., cIk < cI

for all b ∈ (0, 1) and k > 0. In particular, when b is sufficiently low, seeding never occurs

no matter how small c is. On the other hand, when b is sufficiently high (i.e., b > 1 − k),

the market is fully covered without seeding. Intuitively, with strong network effects, the

central planner would like to expand the user network as much as possible. Since seeding

is now more costly, the central planner finds it more profitable to penetrate the market by

charging a low price than by seeding the customers.
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Then, we turn to the decentralized case. The retailer’s and manufacturer’s profits are

ΠR = [(1−b)θ̂+(1+αM+αR)b−w](1−θ̂)−(w+k)αR and ΠM = (w−c)(1−θ̂+αR)−(c+k)αM ,

respectively, subject to 0 ≤ αM + αR ≤ θ̂ ≤ 1. The following lemma characterizes the

equilibrium outcome of the decentralized case.

Lemma A4. With seeding cost k, the equilibrium of the decentralized case satisfies that

there exist cutoffs cRk := max{0, 1 − 4(1 − b) +


8(1− k − b)(1− b)1.5, 4b − 3} and cMk :=

max{0, 1− 4(1− b) + [3(1− b)− k]


2(1−b)
2−b

, 4b− 3} and k̂ ≈ 0.07 such that

1. If k < k̂, let b̂lk < b̂hk be the two elements of {b ∈ (0, 1)|0 < cR = cM < 4b− 3}, then

(a) When b ∈ (1 − k
3
, 1) ∪ (b̂lk, b̂

h
k] and c < cRk , α

∗
M = 0, w∗ = cIk, α

∗
R = θ̂∗D =

max{0, 1−k−b
2

}, thus, Π∗
M = cIk − c, Π∗

R = θ̂∗
2

D + b− cIk;

(b) When b ∈ (b̂hk, 1 − k
3
] ∪ (0, b̂lk] and c < cMk , α∗

M = 3(1−b)−k
2(2−b)

, w∗ = 1+b−k
2

, α∗
R = 0,

θ̂∗D = 3(1−b)−k
2(2−b)

, thus, Π∗
M = (1+b)2−6(1−b)k+k2

4(2−b)
− c, Π∗

R = (1−b)(1+b+k)2

4(2−b)2
;

(c) When c ≥ max{cRk , cMk }, α∗
M = 0, w∗

D = 1+c
2
, α∗

R = 0, θ̂∗D = 3+c−4b
4(1−b)

, thus,

Π∗
M = (1−c)2

8(1−b)
, Π∗

R = (1−c)2

16(1−b)
;

2. If k̂ ≤ k < 3
4
, then the equilibrium outcome is given by (1.a) when b > 1 − k

3
and

c < cRk , by (1.b) when b ≤ 1− k
3
and c < cMk , and by (1.c) when c ≥ max{cRk , cMk }.

3. If k ≥ 3
4
, then cRk = cMk = max{0, 4b − 3} and thus the equilibrium outcome is given

by (1.a) if c < cRk = cMk , and by (1.c) otherwise.

Lemma A4 indicates that the results of Lemma 3 are robust to small perturbation of

k. Similarly, seeding is less often in the decentralized case due to the positive seeding cost.

As in the centralized case, seeding never occurs for both sufficiently low and sufficiently

high b. In particular, when b > 1 − k
3
, the market is also fully covered without seeding.

As k rises, whereas both R-seeding and M-seeding become less likely (i.e., both cRk and cMk
move downward), R-seeding occurs relatively less often. Specifically, for small seeding cost

k < k̂, R-seeding only occurs for intermediate levels of b ∈ (b̂lk, b̂
h
k], which is a subset of the

R-seeding region (b̂, 1) when k = 0. Moreover, for relatively high seeding cost k ≥ k̂, R-

seeding never occurs, whereas M-seeding remains so long as k < 3
4
and seeding disappears

in equilibrium if k ≥ 3
4
. Intuitively, to induce R-seeding, the manufacturer has to charge a

relatively low wholesale price cIk. Alternatively, it can charge a higher price 1+b−k
2

and seed

the customers itself. As the seeding cost rises, it turns out that the lower price cIk reduces

relatively faster, rendering R-seeding less attractive to the manufacturer.

46



C.2 Endogenous Network Effects

Now, we turn to the case where firms can engineer the network effect. To ensure that each

seeding firm can occur under certain conditions, we assume that k > 0 is sufficiently low.

We again start with the centralized case. The central planner’s profit is given by

ΠI =






b− c− γb2 if b > 1− k and c < cIk;

(1−k−b)2

4
+ b− c− γb2 if b ≤ 1− k and c < cIk;

(1−c)2

4(1−b)
− γb2 if c ≥ cIk.

The lemma below characterizes the central planner’s optimal strategy.

Lemma A5. In the generalized model, the central planner’s optimal strategy satisfies that

1. If γ ∈ (1
2
, 1
2(1−k)

), then there exists a cutoff ĉIγk ∈ (0, cIγ) such that

(a) When c < ĉIγk, b
∗
I = b̂hI := 1

2γ
, α∗

I = θ̂∗I = 0, Π∗
I(b̂

h
I ) =

1
4γ

− c;

(b) When c ≥ ĉIγk, b
∗
I = blI ∈ (0,

b̂hI
2
), which is the minimal root of

b(1− b)2 =
(1− c)2

8γ
,

with blI
′
(c) < 0 and blI

′′
(c) > 0, α∗

I = 0, θ̂∗I =
1−2blI+c

2(1−blI)
, Π∗

I(b
l
I) =

(1−c)2

4(1−blI)
− γblI

2
,

where ĉIγk is the unique root of Π∗
I(b̂

h
I ) = Π∗

I(b
l
I) and is decreasing in γ;

2. If γ > 1
2(1−k)

, then there exists a cutoff c̃Iγk ∈ (0, cIγ) such that

(a) When c < c̃Iγk, b
∗
I = b̃hI := 1+k

4γ−1
, α∗

I = θ̂∗I =
2γ−1−2γk

4γ−1
, Π∗

I(b̃
h
I ) =

(1+k)2

4(4γ−1)
+ (1−k)2

4
− c;

(b) When c ≥ c̃Iγk, the equilibrium outcome is given by (1.b),

where c̃Iγk is the unique root of Π∗
I(b̃

h
I ) = Π∗

I(b
l
I) and is decreasing in γ.

Lemma A5 indicates that the results of Lemma 6 are also robust to small perturbation

of k. Note that when the central planner is cost-efficient in engineering the network effect,

i.e., γ < 1
2(1−k)

, it will choose a sufficiently high b = 1
2γ

when it is also cost-efficient in

production, i.e, c < ĉIγk, such that the market is fully covered without seeding. Thus, the

equilibrium coincides with that of Lemma 4. In contrast, when the central planner is less

efficient in engineering the network effect, i.e., γ ≥ 1
2(1−k)

, it will choose a lower b = 1+k
4γ−1

when it is cost-efficient in production, i.e, c < c̃Iγk, such that seeding occurs in equilibrium.

Note too that b = 1+k
4γ−1

is increasing in k. Intuitively, since the marginal cost of seeding
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Figure 6: The Equilibrium of the Centralized Case

c + k is increasing in k, the marginal benefit of seeding must be higher correspondingly as

k increases, leading to a higher degreed of network effect. This is illustrated by Figure 6.

Lastly, we turn to the decentralized case. The manufacturer’s profit is given by

ΠM =






cIk − c− γb2 if b ∈ (1− k
3
, 1) ∪ (b̂lk, b̂

h
k] and c < cRk ;

(1+b)2−6(1−b)k+k2

4(2−b)
− c− γb2 if b ∈ (b̂hk, 1− k

3
] ∪ (0, b̂lk] and c < cMk ;

(1−c)2

8(1−b)
− γb2 if c ≥ max{cRk , cMk }.

The next lemma characterizes the equilibrium outcome of the decentralized case.

Lemma A6. In the generalized model, the equilibrium of the decentralized case satisfies

that there exist cutoffs γ̂k, and cRγk, c
M
γk > 0 such that

i. When γ < γ̂k and c < cRγk, b
∗
D = bhD := b̄, α∗

M = 0, w∗ = 2bhD − 1, α∗
R = θ̂∗D = 0,

Π∗
M(bhD) = 2bhD − 1− c− γbhD

2
, Π∗

R(b
h
D) = 1− bhD;

ii. When γ ≥ γ̂k and c < cMγk, b
∗
D = bmD ∈ (0, bhD), which is the minimal root of

8γb3 − (32γ − 1)b2 + (32γ − 4)b− (k2 + 6k + 5) = 0,

with bmD
′(γ) < 0 and bmD

′′(γ) < 0, α∗
M =

3(1−bmD )−k

2(2−bmD )
, w∗ =

1+bmD−k

2
, α∗

R = 0, θ̂∗D =
3(1−bmD )−k

2(2−bmD )
, Π∗

M(bmD) =
(1+bmD )2−6(1−bmD )k+k2

4(2−bmD )
− c− γbmD

2, Π∗
R(b

m
D) =

(1−bmD )(1+bmD+k)2

4(2−bmD )2
;

iii. When c ≥ max{cRγk, cMγk}, b∗D = blD ∈ (0, bmD), which is the minimal root of
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b(1− b)2 =
(1− c)2

16γ
,

with blD
′
(c) < 0 and blD

′′
(c) > 0, α∗

M = 0, w∗ = 1+c
2
, α∗

R = 0, θ̂∗D =
3+c−4blD
4(1−blD)

,

Π∗
M(blD) =

(1−c)2

8(1−blD)
− γblD

2
, Π∗

R(b
D
l ) =

(1−c)2

16(1−bDl )
.

Moreover, when γ < γ̂k, c
R
γk is the root of Π∗

M(bhD) = Π∗
M(blD) and is decreasing in γ;

when γ ≥ γ̂k, c
M
γk is the root of Π∗

M(bmD) = Π∗
M(blD) and is decreasing in γ.

Figure 7: The Equilibrium of the Decentralized Case

Lemma A6 indicates that the results of Lemma 7 are robust to small perturbation of k.

The difference is that when the manufacturer is cost-efficient in both engineering the net-

work effect and production, i.e., γ < γ̂k and c < cRγk, it will again choose the highest level

b̄. However, in contrast to when k = 0 such that R-seeding occurs, the market is fully cov-

ered without seeding (see Figure 7), since at such a high level of b the retailer finds it more

profitable to penetrate the market by charging a low price than by seeding the customer.

D Uniform Seeding

In this section, we consider when firms have lower targeting capabilities in seeding. In par-

ticular, we focus on the case in which neither the central planner nor the channel partic-

ipants can target customers; instead, they can only uniformly distribute the seeds among
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all customer types, which is referred to as uniform seeding. Proposition A1 below charac-

terizes the equilibrium seeding strategies under uniform seeding.

Proposition A1. Under uniform seeding, the equilibrium seeding level is always zero in

both the centralized and decentralized cases.

Proposition A1 states that under uniform seeding, irrespective of the market structure,

seeding never occurs in equilibrium. While the proof of Proposition A1 is somewhat com-

plex and can be found below, the intuition is transparent. Whereas the explicit produc-

tion cost might be negligible, there is always a nontrivial implicit cost of cannibalization.

Specifically, with extra ∆ units of seeding level, (1 − θ̂)∆ of higher value customers who

would have purchased the product under the initial seeding strategy now receive seeds,

thereby leading to a p(1 − θ̂)∆ loss of revenue. Thus, the virtual marginal cost of uniform

seeding is the sum of the marginal cost and the cost of cannibalization.

It turns out that in the centralized case, the virtual marginal cost of seeding is always

higher than the marginal benefit, which is the central planner’s capability to charge a

higher price due to the network effect. Thus, the central planner chooses not to seed. In

the decentralized case, the retailer’s marginal profit of seeding is the same as that of the

central planner except for that the marginal cost is given by the wholesale price, and thus,

the retailer chooses not to seed either. In contrast, the marginal benefit of seeding is lower

for the manufacturer due to double marginalization. Specifically, the increase in final price

caused by higher seeding level will only partially lead to the increase in manufacturer’s

revenue, as the retailer also has market power. Thus, the manufacturer has a lower incen-

tive to seed the customers, thereby choosing not to seed.

Proof of Proposition A1

Under uniform seeding, the marginal type θ̂ is determined by the indifference condition:

U(θ̂; 1− θ̂+αθ̂) = θ̂+ b(1− θ̂+αθ̂)− p = 0. Thus, p = (1− b+αb)θ̂+ b. First, we consider

the centralized case. Similarly, the central planner’s profit is given by

ΠI := [(1 + bα− b)θ̂ + b](1− α)(1− θ̂)− (1− θ̂ + αθ̂)c.

The lemma below suffices to prove the part of the centralized case of Proposition A1.

Lemma A7. In the centralized case, (i) when c < 2b − 1, α∗
I = 0 and θ̂∗I = 0; (ii) when

c ≥ 2b− 1, α∗
I = 0 and θ̂∗I =

1+c−2b
2(1−b)

.

Proof. Since c < 1, at the optimum θ̂ < 1. Then, the marginal profit of α is given by
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∂ΠI

∂α
= (1− θ̂)[bθ̂(1− α)− (1 + bα− b)θ̂ − b]− θ̂c

< (1− θ̂)[bθ̂(1− α)− (1 + bα− b)θ̂ − bθ̂]− θ̂c < 0.

Thus, for any pair (b, c), we have α∗
I = 0. The remainder follows from Lemma 1.

The next lemma suffices to prove the part of the decentralized case of Proposition A1.

Lemma A8. In the decentralized case, (i) when c < 4b − 3, α∗
M = α∗

R = 0, w∗ = 2b − 1,

θ̂∗D = 0; (ii) when c ≥ 4b− 3, α∗
M = α∗

R = 0, w∗ = 1+c
2
, θ̂∗D = 3+c−4b

4(1−b)
.

Proof. By backward induction, given (αM , w), the retailer’s profit is given by

ΠR = [(1 + bα− b)θ̂ + b](1− α)(1− θ̂)− [(1− θ̂)(1− α) + αR]w,

where α = αM + αR. It follows that
∂ΠR

∂αR
= (1 − θ̂)[bθ̂(1 − α) − (1 + bα − b)θ̂ − b] − θ̂w.

By the same argument as in the proof of Lemma A7, ∂ΠR

∂αR
< 0. Thus, for any pair (b, w),

α∗
R = 0. Thus, the retailer’s profit becomes ΠR = [(1 + bαM − b)θ̂ + b− w](1− αM)(1− θ̂).

It follows that ΠR
′(θ̂) = (1 − αM)[−2(1 + bαM − b)θ̂ + 1 + bαM − 2b + w]. Since θ̂ ∈ [0, 1],

the optimal marginal type θ̂(αM , w) equals 1+w+bαM−2b
2(1+bαM−b)

if 1+ bαM ≥ w > 2b− bαM − 1, and

0 if w ≤ 2b− bαM − 1. Then, by backward induction, the manufacturer’s profit is given by

ΠM =






(1−αM )(1+bαM−w)(w−c)
2(1+bαM−b)

− cαM if 1 + bαM ≥ w > 2b− bαM − 1;

(1− αM)(w − c)− cαM if w ≤ 2b− bαM − 1.

Clearly, if w ≤ 2b− bαM − 1, then the manufacturer will choose αM = 0 and w = 2b− 1,

and thus, ΠM = 2b− 1− c. If 1 + bαM ≥ w > 2b− bαM − 1, then the marginal profit of αM

is given by ∂ΠM

∂αM
=

(w−c)(−b2α2
M+2b2αM−2bαM−b2+b−1+w)

2(1+bαM−b)2
− c. It follows that ∂2ΠM

∂α2
M

= b(w−c)(b−w)
(1+bαM−b)3

.

Without loss of generality, focus on w > c. Thus, when b ≤ c, ∂2ΠM

∂α2
M

< 0. It follows that

∂ΠM

∂αM

≤ ∂ΠM

∂αM


αM=0

=
(w − c)(−b2 + b− 1 + w)

2(1− b)2
− c ≤ (w − c)(−b2 + b)

2(1− b)2
− c < 0.

The second inequality is because w ≤ 1; the last inequality is because b ≤ c < w ≤ 1.

Thus, when b ≤ c, the manufacturer will choose αM = 0 if b ≤ c. When b > c, ∂2ΠM

∂α2
M

< 0

if and only if w > b. The marginal profit of w is given by ∂ΠM

∂w
= (1−αM )(−2w+1+c+bαM )

2(1+bαM−b)
.

This implies that given αM , the optimal w is equal to max


1+c+bαM

2
, 2b− bαM − 1


. Re-

call that if w = 2b− bαM − 1, then αM = 0. Thus, it remains to study when w = 1+c+bαM

2
.

We consider two cases. First, if b < 1+c
2
, then w ≥ b. It follows that
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∂ΠM

∂αM

≤ ∂ΠM

∂αM


αM=0

=
(1+c

2
− c)(−b2 + b− 1 + 1+c

2
)

2(1− b)2
− c.

Taking derivative with respect to b, we have ∂
∂b

∂ΠM

∂αM


αM=0

= −(1−c)(b−c)
4(1−b)3

< 0, meaing that

∂ΠM

∂αM


αM=0

≤
(1+c

2
− c)(−1 + 1+c

2
)

2
− c =

−(1− c)2

8
− c < 0.

Thus, if b < 1+c
2
, then the manufacturer will choose αM = 0. Finally, if b ≥ 1+c

2
, then

there exists a unique αM ∈ (0, 1) such that w = 1+c+bαM

2
= b. Thus, ∂ΠM

∂αM
is maximized

when bαM = 2b− 1− c, i.e., w = b. Substituting w = b, we have

∂ΠM

∂αM

≤ ∂ΠM

∂αM


bαM=2b−1−c

=
(b− c)(−b2α2

M + 2b2αM − 2bαM − b2 + 2b− 1)

2(1 + bαM − b)2
− c

=
−(b− c)[bαM(1− c) + (1− b)2]

2(b− c)2
− c < 0.

The second equality is from substituting bαM = 2b− 1− c. Thus, α∗
M = 0. In summary,

for any pair (b, c), we have α∗
R = α∗

M = 0. The remainder follows from Lemma 1.

E Multiplicative Utility Function

In this section, we consider heterogeneous network effects with a multiplicative form utility

function, U(θ;N) := θ(1 + bN) − p. This can be interpreted as that high-type customers

obtain high benefits from the data network effect compared to low-type customers.

E.1 The Baseline Model

Similar to the main body, we start with a baseline model without seeding or engineering

b. In the centralized case, the central planner chooses a marginal type θ̂ to maximize its

profit ΠI(θ̂) := [θ(1 + b(1 − θ̂)) − c](1 − θ̂). In the decentralized case, the retailer’s and

manufacturer’s profits are ΠR(θ̂, w) := [θ(1+ b(1− θ̂))−w](1− θ̂), ΠM(w) := (w− c)(1− θ̂),

respectively. The next lemma characterizes the equilibrium outcome of the baseline model.

Lemma A9. There exists a unique equilibrium such that

i. (centralized case) The central planner’s optimal strategy satisfies that

θ̂∗I =
1+2b−

√
b2+(1−3c)b+1

3b
, thus Π∗

I =
(b−1+

√
b2+(1−3c)b+1)(1+b2+4b−6bc−(1−b)

√
b2+(1−3c)b+1)

27b2
.

ii. (decentralized case) The equilibrium of the decentralized case satisfies that
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w∗ =
4+4b2+10b+9bc−2(1−b)

√
4b2+(1−9c)b+4

27b
, θ̂∗ =

2+7b−
√

4b2+(1−9c)b+4

9b
, thus

ΠM =
(4+4b2+10b−18bc−2(1−b)

√
4b2+(1−9c)b+4)(

√
4b2+(1−9c)b+4−2(1−b)

243b2
,

ΠR =
(2−2b−

√
4b2+(1−9c)b+4)(2+2b2−22b+18bc−(1−b)

√
4b2+(1−9c)b+4)

729b2
.

Figure 8 and Lemma A9 show the baseline results, which indicates that the impacts of

network effects characterized in Corollary 1 of main body are robust. First, as the network

effect increases, the profits of value chain participants become higher. Second, strengthen-

ing of network effects reduces the efficiency loss caused by double marginalization.

0 0.2 0.4 0.6 0.8 1
0.22

0.228

0.236

0.244

0.252

0.26

Figure 8: The Profits and Efficiency Loss of the Value Chain

E.2 Expanding the Network via Seeding

Now, we investigate the case of expanding networks through seeding strategies. The profit

of central planner becomes ΠI := [θ(1 + b(1− θ̂+ α))− c](1− θ̂)− cα. In the decentralized,

the retailer’s and manufacturer’s profits are ΠR(αR, θ̂;αM , w) := [θ(1+b(1− θ̂+αR+αM))−
w](1 − θ̂) − wαR and ΠM(αM , w) := (w − c)(1 − θ̂ + αR) − cαM , respectively, subject to

0 ≤ αR + αM ≤ θ̂ ≤ 1. Proposition A2 below characterizes the equilibrium of each case.

Proposition A2. With seeding, there exists a unique equilibrium such that

i. (centralized case) The central planner’s optimal strategy satisfies that given cI := b
4
,

(i) When c < cI , αI =
1
2
, θ̂I =

1
2
, thus, ΠI =

1+b
4

− c;
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(ii) When c ≥ cI , αI = 0, θ̂I =
1+2b−

√
b2+(1−3c)b+1

3b
, thus,

ΠI =
(b−1+

√
b2+(1−3c)b+1)(1+b2+4b−6bc−(1−b)

√
b2+(1−3c)b+1)

27b2
.

ii. (decentralized case) The equilibrium of the decentralized case satisfies that

(i) When c < cM , α∗
M = 2+4b−

√
4b2+7b+4
3b

, w∗ = (2
√
4b2+7b+4+b+2)(

√
4b2+7b+4−b−2)

9b
, α∗

R = 0,

θ̂∗ = 2+4b−
√
4b2+7b+4
3b

, thus, ΠM = (8b2+14b+8)
√
4b2+7b+4−11b3−27b2c−39b2−42b−16

27b2
,

ΠR = (2+b−
√
4b2+7b+4)(

√
4b2+7b+4−5b2−8b−2)

27b2
;

(ii) When c ≥ cM , α∗
M = 0, w∗ =

4+4b2+10b+9bc−2(1−b)
√

4b2+(1−9c)b+4

27b
, α∗

R = 0, θ̂∗ =
2+7b−

√
4b2+(1−9c)b+4

9b
, thus, ΠM =

(4+4b2+10b−18bc−2(1−b)
√

4b2+(1−9c)b+4)(
√

4b2+(1−9c)b+4−2(1−b)

243b2
,

ΠR =
(2−2b−

√
4b2+(1−9c)b+4)(2+2b2−22b+18bc−(1−b)

√
4b2+(1−9c)b+4)

729b2
,

where cM is the unique root of (8b2+14b+8)
√
4b2+7b+4−11b3−27b2c−39b2−42b−16

(4+4b2+10b−18bc−2(1−b)
√

4b2+(1−9c)b+4)(
√

4b2+(1−9c)b+4−2(1−b)
= 1

9
.

Figure 9: The Equilibrium Outcomes with Seeding and the Efficiency Loss

Figure 9(a) visualizes the equilibrium outcome given by proposition A2. We find that

the conclusions given in Section 4.1 still hold when the network effects are heterogeneous.

First, the value chain can still monetize the network effect by expanding the user base by

seeding strategy. This occurs when marginal costs are sufficiently small. Second, it is never

an equilibrium for the manufacturer and the retailer to seed the market simultaneously. In

fact, only the manufacturer adopts seeding strategies.

Figure 9(b) shows the results of the efficiency loss compared to the baseline model.

Similar to the findings revealed in Proposition 4, the impact of introducing seeding on the

value chain’s efficiency is also non-monotonic in the heterogeneous network effects case.
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E.3 The Generalized Model

Next, we consider the generalized model which incorporates both seeding and engineering

strategies to further extend the network effects. Due to the computational complexity, we

are only able to obtain the results through numerical analysis.

Figure 10: The Equilibrium Outcomes of the Generalized Model

As Figure 10 shows, the optimal strength of network effects does note change continu-

ously. That is, there is a jump when the decision maker switches from no-seeding strategy

to seeding strategy, which is consistent with the results of the main body. Note that as the

optimal b increases horizontally towards the right side, it also falls into the seeding region

both in the centralized and decentralized cases. Therefore, similar to Proposition 2, the

complementary relationship between the two strategies is still present.
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