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Abstract

This paper studies a signaling model in which a strategic player can manipulate

the cost of signaling. A seller chooses a price scheme for a good, and a buyer with a

hidden type chooses how much to purchase as a signal to receivers. When receivers

observe the price scheme, the seller charges monopoly prices, and the buyer purchases

less than the first best. In contrast, when receivers do not observe the price scheme, the

demand for signals is more elastic. In equilibrium, the seller charges lower prices, and

the buyer purchases more than when receivers observe the price scheme; the highest

types purchase more than the first best. The model suggests that price transparency

benefits the seller but harms the buyer. The model can be applied to schools choosing

tuition, retailers selling luxury goods and media companies selling advertisements.
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1 Introduction

Signaling is prevalent in various markets. Whereas in classic signaling models, the sender’s

preference depends only on his intrinsic type, in many vertical markets in which signaling

prevails, the signaling cost—thus the sender’s preference—also depends on the choice made

by an upstream strategic player. For example, when a student obtains education to signal

his ability, the university sets the tuition; when a consumer purchases a luxury good to signal

his wealth, the retailer chooses the price; when a firm incurs advertising expenses to signal

its product’s quality, the media company determines the costs of advertising messages.

A key observation is that since the signaling cost is endogenous, how receivers interpret

and respond to the sender’s signal depends on whether they observe the upstream player’s

choice. Consider a seller choosing the price of a good that can create signaling value for the

customers, as in the above examples. How does receivers’ information about the price affect

the seller’s pricing strategy? How does such information affect the degree of signaling and

social welfare?

In this paper, we characterize the optimal price scheme for a seller facing a buyer who is

endowed with a hidden type and chooses how much to purchase as a signal to receivers. The

equilibrium depends critically on whether receivers observe the price scheme. When receivers

observe the price scheme, the seller internalizes the buyer’s signaling activity when screening

the buyer, leading to a downward distortion in quantity. In contrast, when receivers do not

observe the price scheme, the buyer is more sensitive to price changes, since receivers will

attribute differences in choice only to buyer preference heterogeneity. This means that the

demand for the good is more elastic, and thus, the seller lowers prices. In equilibrium, the

buyer chooses a larger quantity and obtains higher utility, whereas the seller gains lower

profits than when receivers observe the price scheme.

This paper has meaningful implications for the price transparency of signaling goods.

In the case of job market signaling, our model suggests that education is more costly and

students are worse off when employers observe the net prices for school than otherwise.

This implies that policies that improve the transparency of the net prices at colleges and

universities, e.g., U.S. Code § 1015a,1 may unintentionally raise education expenses and

harm students. This is because these policies allow schools to commit to high prices and not

dilute the signaling value of a high-cost education by means of fee waivers or financial aid.

1Since 2011, American colleges and universities have been required to provide reasonable estimates of the

net prices, including tuition, miscellaneous fees and personal expenses, that students will pay for school. See

“U.S. Code § 1015a - Transparency in college tuition for consumers” for details.
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In addition, our model suggests that a signaling good yields higher profits if the price is

more transparent. This is consistent with real-world business practices. For example, luxury

brands, such as Louis Vuitton, Tiffany and Hermes, strive for a reputation of never or very

rarely being on sale. These strategies help the sellers better commit to high prices, thereby

maintaining the signaling values of luxury goods. In the advertising industry, the high costs

of each year’s Super Bowl commercials are widely reported, thereby enhancing the signaling

value of these costly commercials; in China, the TV station CCTV broadcasts the auctions

for its popular TV show commercials to accentuate their signaling values.

For expository purposes, we present our model à la Spence (1973) with a school selling

productive education to a worker whose ability is privately known. As a reference point, we

revisit Spence’s game by assuming that competitive schools set tuition at marginal cost. In

the least-cost separating equilibrium (i.e., the Riley outcome (Riley, 1979)), all worker types

except the lowest choose more education than the first best, as they attempt to separate

themselves from lower types. That is, signaling induces over-education.

Then, we consider the monopolistic school’s pricing strategy and start with the case in

which employers observe the tuition scheme. Following the screening literature, we focus on

the seller-optimal equilibrium, in which all types except the highest choose less education

than the first best. The downward distortion is due to screening. With lower marginal effort

costs, a higher type has an incentive to mimic lower types. To incentivize truth-telling, the

school leaves information rents to the worker, meaning that the marginal profit of education

is less than the marginal social surplus. This induces the school to undersupply education.

While this mechanism is similar to screening models such as Mussa and Rosen (1978),

our model also incorporates signaling, which can mitigate the downward distortion caused

by screening. To illustrate, suppose that employers can observe the worker’s ability, thereby

eliminating signaling. When a higher type mimics a lower type, he not only incurs a lower

cost than the latter but also obtains a higher wage due to higher ability. The second effect

means that the worker can extract more information rents from the school. Therefore, the

screening distortion is worse than when signaling is present.

Now, consider the case when employers do not observe the tuition scheme. We propose

a new refinement, quasi-divinity, which selects the seller-optimal separating equilibrium (the

associated Riley outcome), in which the school charges lower tuition and the worker chooses

more education than when employers observe the tuition scheme. The difference is driven by

a signal-jamming effect: the school jams the worker’s signal when employers cannot observe

the actual tuition scheme and thus infer the worker’s ability based on a conjectured scheme.
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To illustrate, suppose the school lowers tuition so that the worker chooses more education

than in the initial state. When employers observe the tuition scheme, they cut wages, since

any education level now corresponds to a lower-ability worker. This dampens the worker’s

demand for additional education. In contrast, when employers do not observe the tuition

scheme, they do not adjust wages despite that tuition changes. Therefore, the demand for

education is more elastic, making the price cut more profitable. In equilibrium, employers

correctly anticipate the school’s choice and offer lower wages since education is inflated. This

reduces the worker’s willingness to pay, and thus, the school gains lower profits.

Since the school is worse off when employers do not observe the tuition scheme, one may

wonder why the school does not disclose tuition to employers. The reason is that the school

cannot credibly announce the price absent intervention such as mandatory disclosure, since

the school has an incentive to secretly cut prices. Such an observation may explain the fact

that whereas the listed tuition at American colleges and universities is rising, these schools

offer students various and inclusive forms of financial aid. The rationale is that employers

cannot easily observe the details of such financial aid and thus do not know the actual cost

of education. By raising the published tuition while simultaneously reducing the undisclosed

net prices through stipends, schools persuade employers that their students are smarter than

is actually the case, thereby allowing the schools to collect higher revenues from students.

Regarding welfare, we show that when signaling is sufficiently intense (e.g., when there

is significant over-education in Spence’s game), social welfare is higher when the tuition

scheme is observed by employers than otherwise, since in the former case signaling mitigates

the screening distortion to a large extent, whereas in the latter case, cheaper tuition induces

many high types to overinvest in education. Moreover, when signaling is sufficiently intense,

both cases yield higher social welfare than Spence’s game in which schools are competitive.

This implies that promoting competition in markets with signals is not necessarily socially

beneficial, since it may lead to substantial wasteful signaling.

Finally, as extensions, we first consider the case in which the worker is productive even

if he has no education (e.g., in Spence (1973), education is a pure signal). We show that our

results are robust. Moreover, when employers observe the tuition scheme, the market may

consist of a certification segment and an education segment: a lower interval of types pay

a fixed fee for zero education, as if they were certified by the school as having the average

productivity, whereas the higher types purchase education to signal their abilities. Next, we

consider when the school maximizes a weighted average of its and the worker’s payoffs. We

show that our results remain unchanged, up to the relative Pareto weight of the two parties.
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1.1 Related literature

This paper is most closely related to the literature on signaling. This paper contributes to

signaling games by allowing a strategic player to affect the signaling cost. In classic signaling

models (e.g., Spence 1973; Leland and Pyle 1977; Riley 1979; Milgrom and Roberts 1986;

Bagwell and Riordan 1991), signaling activity gives rise to overinvestment in costly actions.

Spence (1974), Ireland (1994) and Andersson (1996) consider the welfare-maximizing tax on

signals. In contrast, we consider the profit-maximizing tax, which “over-taxes” signaling and

causes a downward distortion in allocation when receivers observe the tax scheme.

The paper is also closely related to the literature on screening. Screening models, such

as Mussa and Rosen (1978) and Maskin and Riley (1984), typically assume that buyers

derive only intrinsic value from the seller’s product. Our model differs in that the product

has also a signaling value such that a buyer’s equilibrium payoff depends on the information

that the product conveys. Rayo (2013) also considers the optimal monopolistic pricing to sell

signals, assuming that receivers observe the seller’s mechanism. Whereas we assume additive

separability in receivers’ responses (e.g., wages) and the buyer’s type (e.g., ability) for the

buyer’s preference, Rayo’s adopts a multiplicative structure and employs novel screening

techniques to characterize which types should be pooled into the same level of signal. Our

contribution is twofold. First, whereas Rayo assumes additive separability in intrinsic and

signaling values for the buyer’s preference, which leads to the same downward distortion as

in the above classic screening models, we allow for a more general structure and show that

signaling can mitigate the screening distortion (see Section 5). More important, our paper

also studies the case where receivers cannot observe the seller’s mechanism and compares

this to the observed case and a variety of other benchmarks. This enables us to assess how

price transparency affects the degree of signaling and welfare. Friedrichsen (2018) considers

a two-dimensional model where buyers differ in both their taste for intrinsic value and their

desire for signaling value, with the price being publicly observed. Similar to our paper, the

author shows that monopoly can yield higher welfare than perfect competition by preventing

wasteful signaling. Calzolari and Pavan (2006) study information disclosure in a sequential

screening model. They show that the upstream principal leaves the agent more rents if she

discloses information about the agent’s type to the downstream principal. In our model, the

seller leaves the buyer more rents if receivers can observe the buyer’s type than otherwise.

The unobserved tuition case belongs to the class of signal-jamming models proposed by

Fudenberg and Tirole (1986). For example, in Holmström (1999), the labor market cannot

distinguish the impact of the worker’s ability from that of his effort on output. Therefore,
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the worker works harder to improve the market’s perception of his ability. In comparison, in

this paper, the labor market cannot distinguish the impact of the worker’s ability from that

of tuition on the education level. Thus, the school has an incentive to secretly cut tuition,

thereby improving the market’s perception and stimulating demand for education.

Our paper contributes to the literature on intermediate price transparency. Inderst and

Ottaviani (2012) shows how product providers compete via commissions paid to consumer

advisers. Commissions bias advice, so an increase in a firm’s commission reduces consumers’

willingness to pay if they observe the commission. In our model, cheaper tuition reduces the

signaling value of education; thus, tuition cuts are less effective at stimulating demand when

employers observe tuition than they would be otherwise. In Janssen and Shelegia (2015), a

manufacturer chooses a wholesale price, retailers choose retail prices, and consumers search

for the best deal. They show that retailers are less sensitive to wholesale price changes when

consumers do not observe the price than otherwise, as uninformed consumers are more likely

to continue to search when the retail price increases. In our model, by contrast, the worker

is more sensitive to tuition changes when employers do not observe the tuition scheme than

otherwise, as uninformed employers will have better (worse) beliefs over the worker’s ability

if they observe a higher (lower) education level.

The impact of price transparency on product price and demand elasticity is also similar

to that of price transparency in sequential bargaining problems such as Hörner and Vieille

(2009). In particular, Kaya and Liu (2015) consider bargaining between a long-run buyer and

a sequence of short-run sellers. They show that prices are higher when the sellers can observe

preceding sellers’ offers than otherwise. This is because with observable prices, a change in a

seller’s price exerts an informational externality (which is absent with unobservable prices)

on the subsequent seller, inducing the latter to change price in the same direction. This in

turn implies that demand is more elastic when prices are unobservable.

Lastly, our paper relates to the growing literature on information intermediaries initiated

by Biglaiser (1993). For example, Lizzeri (1999) studies the design of certification system and

shows that a monopolistic certifier may disclose no information about the agent and capture

all the surplus. In Chan et al. (2007), schools design grading systems to place their students

in the job market. They show that schools have incentives to inflate grades to improve the

market’s perception of their students. In contrast to these models, our model incorporates

screening in addition to signaling, as the designer cannot observe the agent’s type. Similarly,

Zubrickas (2015) studies a school’s optimal grading policy when the students’ abilities are

privately known and the job market has myopic beliefs about the school’s grading policies.
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More recently, Biglaiser and Li (2018) consider an expert market in which a seller privately

chooses effort before going to a middleman who decides whether to buy the seller’s good after

receiving a signal about the good’s quality. They show that the informational externality of

the middleman can either increase or reduce the seller’s effort. Our model differs in that the

agent’s private information is exogenous and transmitted through signaling.

Organization. The remainder of the paper is organized as follows. Section 2 introduces the

model. Section 3 considers a two-type example to explain the key economic forces. Section 4

states the general results. Section 5 discusses the underlying intuitions and the implications

of our results. Section 6 studies the equilibrium selection in the unobserved tuition case and

explores some extensions. Section 7 concludes the paper. All proofs are in the Appendix.

2 Model

For expositional convenience, we present our model in conformity with the seminal work of

Spence (1973). In Appendix E, we describe in a parallel manner how to apply this model to

other important applications, such as conspicuous consumption and advertising.

Players and actions. There is a school (seller), a worker (buyer) and multiple identical

and competing firms, also referred to as the labor market (receiver). At the beginning of the

game, the school chooses a tuition scheme T : R+ → R+, which specifies the tuition fee for

each education level z. Then, the worker decides how much education to purchase from the

school after observing the tuition scheme. For simplicity, we do not explicitly model firms’

actions; rather, we directly assume that they offer the worker a wage equal to his expected

productivity (see below).

The worker’s productivity depends on both his ability (type) θ and education level z.

Specifically, θ is a random variable, which is distributed over the interval [θ, θ̄] according to

a distribution function F (θ) with a positive density function f(θ). Let Q(z, θ) denote the

productivity of a type-θ worker with education level z. We assume that Q(z, θ) is smooth,

with Qz, Qθ > 0 if z > 0, and Qzz ≤ 0. We also assume that education is essential in that a

worker with no education has zero productivity irrespective of his ability, i.e., Q(0, θ) ≡ 0.

We consider this assumption realistic, as many jobs require a minimal education level. For

example, a lawyer candidate must graduate from a law school, and medical school education

is prerequisite for being a licensed practitioner of medicine. In Section 6, as extensions, we

consider the case in which education is nonessential, i.e., Q(0, θ) ≥ 0 and Qθ > 0, and the

case in which education is a pure signal, i.e., Qz ≡ 0 for all θ.
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Information. The worker’s education level is publicly observed, but his ability is privately

known. However, the prior distribution F is common knowledge. In this paper, we mainly

study two variants of the model: in the observed case, the tuition scheme is observed by the

labor market; in the unobserved case, it is unobserved by the labor market. In each case,

given the available information, the labor market chooses a wage schedule W : R+ → R+,

which specifies the wage for each education level z.

Payoffs. We normalize the school’s cost of providing education to zero. Suppose the school

chooses some tuition scheme T ; then, z(θ;T ) denotes the education level chosen by a type-θ

worker under T . Given the tuition scheme T and a wage schedule W , a type-θ worker who

chooses education level z has utility

u(z, θ) := W (z)− C(z, θ)− T (z),

where C(z, θ) denotes the worker’s effort cost of education. Assume that C(z, θ) is smooth,

with Cz > 0 if z > 0 and Czz > k for some k > 0. Moreover, the standard single-crossing

property holds: Czθ < 0. This condition reflects the feature that a higher-ability worker has

lower marginal effort costs than a lower-ability worker. We further normalize C(0, θ) to 0

for all θ ∈ [θ, θ̄]. This implies that, combined with Czθ < 0, Cθ < 0 if and only if z > 0.

Finally, we assume that the worker can obtain a zero-utility outside option by acquiring no

education and not entering the labor market.

First-best benchmark. Define S(z, θ) as the social surplus function, i.e.,

S(z, θ) := Q(z, θ)− C(z, θ).

Note that S(z, θ) is strictly concave in z and thus has a unique maximizer zfb(θ). Assume

that zfb(θ) ≥ 0 for all θ ∈ [θ, θ̄], with equality possibly holding at θ only. Thus, zfb(θ) is

determined by the first-order condition

Sz(z
fb(θ), θ) = Qz(z

fb(θ), θ)− Cz(z
fb(θ), θ) = 0. (2.1)

By the maximum theorem, zfb(θ) is continuous. We also assume that S(z, θ) has increasing

differences in both arguments: Szθ > 0. This means that a higher-ability worker can generate

higher marginal surplus through education. It follows that zfb(θ) is increasing on [θ, θ̄].

Equilibrium. We use perfect Bayesian equilibrium as the solution concept throughout the

paper. In the observed case, an equilibrium is a tuition scheme T o, and conditional on each

tuition scheme T , an education function zo(θ;T ), a wage schedule W o(z;T ), and the labor

market’s posterior belief about the worker’s ability, or simply the market belief, such that
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(i) For each T : given W o(z;T ), zo(θ;T ) maximizes u(z, θ); W o(z;T ) = E[Q(z, θ)|zo(θ;T )]
with the market belief updated by Bayes’ rule whenever possible.

(ii) T o maximizes the school’s expected profit E[T (zo(θ;T ))] among all T .

In the unobserved case, the market’s inference is independent of the actual tuition scheme

but is conditional on a conjectured tuition scheme; in equilibrium, the conjecture is correct.

Formally, an equilibrium is a tuition scheme T u, a wage schedule W u along with the market

belief, and conditional on each tuition scheme T , an education function zu(θ;T ), such that

(i) Given W u, for each T , zu(θ;T ) maximizes u(z, θ); W u(z) = E[Q(z, θ)|zu(θ;T u)] with

the market belief updated by Bayes’ rule whenever possible.

(ii) T u maximizes the school’s expected profit E[T (zu(θ;T ))] among all T .

As in standard signaling games, there may exist multiple equilibria. To this end, in the

observed case we focus on the seller-optimal equilibrium, i.e., the equilibrium that yields the

highest payoff for the seller. This is essentially allowing the school to communicate with the

worker and the labor market, implicitly through the tuition scheme, as to which signaling

equilibrium to play in each subgame. In the unobserved case, we propose a novel refinement,

quasi-divinity, which uniquely selects the seller-optimal separating equilibrium, i.e., the most

profitable equilibrium for the seller provided that z(θ) is one-to-one if z > 0. In Section 6,

we will discuss the equilibrium selection in the unobserved case in greater detail.

2.1 Direct mechanisms

Appealing to the revelation principle, we now focus on direct mechanisms between the school

and the worker in both the observed and unobserved cases. Specifically, the school offers the

worker a contract {z(θ), T (θ)}, and both players know which wage schedule the labor market

will choose (as prescribed by equilibrium). Then, the worker privately reports a type to the

school; thus, the labor market will observe the worker’s education level but not his report.2

Finally, the labor market chooses a wage schedule W (z) based on the available information:

in the observed case, the labor market observes the contract; in the unobserved case, it does

not. Reporting a type θ̂, the worker obtains education z(θ̂), pays tuition T (θ̂), and receives

wage W (z(θ̂)). Hence, a direct mechanism (or simply mechanism) consists of an allocation

rule z(θ) and a transfer rule T (θ)−W (z(θ)), as in classic mechanism design problems.

2If reports are public, then the set of outcomes that can be implemented by a truthful direct mechanism

is smaller than what can be obtained by an indirect mechanism in which the worker chooses education.
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Worker’s problem. In both cases, given a mechanism, a type-θ worker chooses a report θ̂

to maximize his utility

u(θ̂, θ) := W (z(θ̂))− C(z(θ̂), θ)− T (θ̂).

A mechanism is incentive compatible if the worker is willing to truthfully report his type,

and is individually rational if the worker obtains nonnegative utility. Let U(θ) := u(θ, θ) be a

type-θ worker’s equilibrium utility. We say that a mechanism is implementable if it satisfies

incentive compatibility (IC) and individual rationality (IR). Appealing to Mas-Colell et al.

(1995, Proposition 23.D.2), we characterize all implementable mechanisms below.

Lemma 1. In both cases, a mechanism is implementable if and only if

(i) z(θ) is nondecreasing.

(ii) Define θ0 := inf{θ|z(θ) > 0}. For any θ < θ0, U(θ) = 0; for any θ ≥ θ0,

U(θ) = U(θ0) +

󰁝 θ

θ0

−Cθ(z(s), s)ds ≥ 0.

School’s problem. In the observed case, since we focus on the seller-optimal equilibrium,

the school’s problem can be formulated as choosing a mechanism to maximize its expected

profit subject to the IC and IR constraints and the market belief being correct. In contrast,

in the unobserved case, since the market’s inference is independent of the school’s choice,

given a wage schedule, the school chooses a contract, rather than a mechanism, to maximize

its expected profit subject to the IC and IR constraints.

From Lemma 1, we can rewrite the school’s problem for both cases. Note that IC means

that T (θ) = W (z(θ))− C(z(θ), θ)− U(θ) and that U(θ0) is optimally set to 0. Substituting

and integrating by parts, the school’s problem in both cases can be formulated as choosing

an allocation rule z(θ) to maximize its expected profit

󰁝 θ̄

θ0

󰀗
W (z(θ))− C(z(θ), θ) +

1− F (θ)

f(θ)
Cθ(z(θ), θ)

󰀘
dF (θ) (2.2)

subject to z(θ) being nondecreasing. Note that the terms between brackets amount to the

virtual surplus in mechanism design theory, except that the wage W (z) is now endogenous.

It is helpful to define the sum of the effort cost and consumer surplus (rent) as

G(z, θ) := C(z, θ) +
1− F (θ)

f(θ)
[−Cθ(z, θ)] .

Then, the virtual surplus is simplified as W (z) − G(z, θ). Since Czθ < 0, we have Gz ≥ Cz

for all z ∈ R+, with equality holding at θ̄ only.
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Equilibrium. In the observed case, market belief correctness means that for each allocation

rule z(θ), W (z) = E[Q(z, θ)|z(θ)]. While W (z(θ)) does not necessarily equal Q(z(θ), θ) when

z(θ) is constant, the law of total expectation implies that program (2.2) is equivalent to3

max
z(θ)

󰁝 θ̄

θ0

[Q(z(θ), θ)−G(z(θ), θ)] dF (θ) (2.3)

subject to z(θ) being nondecreasing. Thus, to characterize the equilibrium of the observed

case, it suffices to solve program (2.3). Let zo(θ) be an optimal allocation rule with cutoff

type θo0. Let T
o and W o be the associated tuition scheme and wage schedule, respectively.

In the unobserved case, an equilibrium is an allocation rule zu(θ) and a wage schedule

W u along with the market belief, such that (i) given W u, zu(θ) solves program (2.2); (ii)

W u(z) = E[Q(z, θ)|zu(θ)] with the market belief updated by Bayes’ rule whenever possible.

Let T u and θu0 be the associated tuition scheme and the cutoff type, respectively. In case of

multiple equilibria, we focus on the seller-optimal separating equilibrium.

To guarantee that an equilibrium exists in both cases, we assume that Gzz > k for some

k > 0, which is ensured by Czzθ ≤ 0. Moreover, we assume that Gzθ < 0, i.e., it is less costly

for the school to serve a higher-ability worker. That is, we impose a single-crossing property

on the virtual surplus. This is ensured by Czθθ ≥ 0 and the assumption below.

Assumption 1. d[(1− F (θ))/f(θ)]/dθ < 1.

Assumption 1 is clearly less restrictive than the standard monotone hazard rate property

in mechanism design theory, since it only requires the slope of the hazard rate to not be too

negative. Throughout, we assume that Czzθ ≤ 0, Czθθ ≥ 0 and Assumption 1 holds.

2.2 Spencian job market signaling

As a reference point, we briefly revisit Spence’s signaling game in which tuition is fixed at

zero, as if competitive schools set tuition at the marginal cost. In this case, an equilibrium

is an education function zs(θ) and a wage schedule W s along with the market belief, such

that (i) given W s, zs(θ) maximizes u(z, θ); (ii) W s(z) = E[Q(z, θ)|zs(θ)] with the market

belief updated by Bayes’ rule whenever possible. Following the signaling literature, we focus

on the least-cost separating equilibrium (i.e., the Riley outcome). Appealing to Mailath and

3In Rayo (2013), the buyer’s preference has a multiplicative structure such that his marginal utility from

the receiver’s action is increasing in his type, whereas in our model with additive separability, such marginal

utility is independent of the buyer’s type. Thus, in contrast to our model, the law of total expectation cannot

simplify the seller’s problem in Rayo’s model, in which a novel screening technique is provided.
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von Thadden (2013, Theorems 2, 5 and 6), we have that such an equilibrium exists, in which

zs(θ) is continuous and increasing on [θ, θ̄] and satisfies the differential equation

Qz(z
s(θ), θ) +Qθ(z

s(θ), θ)θs′(zs(θ))− Cz(z
s(θ), θ) = 0 (2.4)

on (θ, θ̄] with zs(θ) = zfb(θ), where θs(z) is the inverse of zs(θ), which is also differentiable

on (θ, θ̄]. Since zs(θ) is increasing, we have W s(zs(θ)) = Q(zs(θ), θ) for all θ ∈ [θ, θ̄].

Note that the first two terms on the left-hand side (LHS) of (2.4) are the total derivative

of W s(zs(θ)). In particular, the second term is nonnegative given the monotonicity of zs(θ).

Since S(z, θ) is strictly concave in z, comparing (2.4) with (2.1) implies that zs(θ) ≥ zfb(θ)

for all θ ≥ θ, with equality holding at θ only. This result means that in Spence’s game, the

worker chooses more education than the first best; that is, signaling leads to over-education.

The intuition is well known. Under complete information, the marginal benefit of education

is its marginal contribution to human capital. In contrast, when ability is privately known,

in addition to the human capital effect, there is a signaling effect ; that is, a higher education

level makes the labor market regard the worker as having higher ability. Thus, the marginal

benefit of education is higher than under complete information.

3 A two-type example

To provide simple intuitions for our main results, we consider a two-type example. Assume

that θ ∈ {θL, θH} with 0 < θL < θH and that both types are equally likely. Assume further

that Q(z, θ) = θz and C(z, θ) = z2/(2θ). The analysis can be developed graphically.

In Panel (a) of Figure 1, we depict each type’s indifference curve and productivity. The

first-best allocations zfbL and zfbH are determined by the tangent points between each type’s

indifference curve and productivity line. Note that the low type θL strictly prefers (zfbH ,W fb
H )

to (zfbL ,W fb
L ). Therefore, the first-best outcome cannot be an equilibrium of Spence’s game,

as it violates the incentive constraint: WL − C(zL, θL) ≥ WH − C(zH , θL). In the least-cost

separating equilibrium, the low type chooses the first-best education level zfbL , whereas the

high type chooses a higher level zsH than the first best zfbH to separate himself from the low

type, so that the incentive constraint binds (i.e., the low type’s indifference curve intersects

with the high type’s productivity line). That is, signaling induces over-education.

In Panel (b) of Figure 1, we start to consider the school’s strategic choice. Analogously,

we depict each type’s isoprofit curve that yields a constant virtual surplus W −G(z, θ), and

his productivity line. Note that the low type’s isoprofit curve is steeper than his indifference

12



(a) Tuition equals zero (b) School chooses tuition

Figure 1

curve, whereas for the high type, the two curves coincide.4 In the observed case, market belief

correctness implies that WL +WH = θLzL + θHzH irrespective of whether zL = zH . Thus,

the seller-optimal equilibrium is given analogously by the tangent point between each type’s

isoprofit curve and productivity line, in which the low type chooses a lower education level

zoL than the first best zfbL , whereas the high type chooses exactly the first best zfbH . That is,

in stark contrast to Spence’s game, the observed case exhibits under-education. The altered

equilibrium results from screening. Intuitively, with lower effort costs, the high type has an

incentive to mimic the low type. To incentivize truth-telling, the school leaves the high type

an information rent C(zL, θL) − C(zL, θH). Since Czθ < 0, we have Qz(z, θL) − Gz(z, θL) <

Qz(z, θL) − Cz(z, θL) = Sz(z, θL). That is, the marginal virtual surplus (marginal profit) of

the low type is less than the marginal social surplus. This induces the school to undersupply

education to the low type. Since there is no higher type to mimic the high type, he receives

the first-best education level; that is, there is no distortion at the top.

Now, let us consider the unobserved case. Suppose the labor market believes naively that

the school’s contract is the same as that in the observed case and thus offers the same wage

schedule. Will the school choose the same contract? The answer is no. To see this, consider

an alternative contract such that the school only offers the high education level zfbH from the

observed case and reduces tuition to the level that also attracts the low type. This leads to

a profitable deviation because the point (zfbH ,W o
H) is strictly above the isoprofit curve of the

4According to Section 2.1, we have G(z, θL) = C(z, θL) + [C(z, θL)−C(z, θH)] and G(z, θH) = C(z, θH).

Since Czθ < 0, we have Gz(z, θL) > Cz(z, θL). Thus, the statement is proven.

13



low type, as depicted in Panel (b). Intuitively, since the market belief is the same as in the

observed case, the school has an incentive to induce the low type to mimic the high type via

secret price cuts, thereby collecting a higher revenue from the worker. Thus, in equilibrium,

the high education level must be so high that the school finds it too costly to induce the low

type to deviate, i.e., the incentive constraint must hold: WL −G(zL, θL) ≥ WH −G(zH , θL).

In the seller-optimal separating equilibrium, the low type chooses the same education level as

in the observed case, whereas the high type chooses a higher level than that of the observed

case (which is the first-best), so that the above incentive constraint binds (i.e., the low type’s

isoprofit curve intersects with the high type’s productivity line). That is, the worker obtains

more education in the unobserved case. Since in both cases the low type’s allocation is the

same and the high type’s IC constraint binds, each type gains the same utility in both cases.

However, in the unobserved case the high education level zuH is inefficient; thus, to make the

high type no worse off, the price of the high education level must be lower. This implies that

both tuition and the school’s payoff are lower in the unobserved case. Lastly, note that both

types choose less education in the unobserved case than in Spence’s game. This is because

the low type’s isoprofit curve is steeper than his indifference curve, thereby tangent to the

low productivity line and intersecting with the high productivity line both at lower points.

In summary, this example illustrates that in the observed case, the worker chooses less

education than the first-best level. In the unobserved case, he chooses more education than

in the observed case but less than in Spence’s game. Moreover, in the unobserved case, both

tuition and the school’s payoff are lower, but the worker’s utility is (weakly) higher than in

the observed case. In the next section, we generalize these qualitative results.

4 The results: The role of price transparency

In this section, we state the general results of the paper.

4.1 Labor market observes tuition

We first consider the observed case. From Section 2.1, we can characterize the seller-optimal

equilibrium by solving program (2.3). Define the virtual surplus in the observed case as

Jo(z, θ) := Q(z, θ)−G(z, θ).

Note that Jo(z, θ) is strictly concave in z and thus has a unique maximizer on R+, denoted

z∗(θ). Moreover, we say that the virtual surplus in the observed case is regular if Jo(z, θ)
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also has increasing differences in z and θ. Whereas the model assumptions only imply that

Gzθ < 0, it is immediate that if Qzθ ≥ 0 in addition, then Jo(z, θ) is regular. It follows that

in this case z∗(θ) is continuous and increasing on [θ, θ̄]. Thus, the school’s problem reduces

to pointwise maximization for Jo(z, θ) under regularity.

In contrast, when regularity does not hold, z∗(θ) might be decreasing in some region. In

this case, we adopt the generalized ironing technique developed by Toikka (2011). Define

H(z, θ) :=

󰁝 θ

θ

Jo
z (z, s)ds.

Since Jo
z (z, θ) is continuous, H(z, θ) is continuously differentiable on [θ, θ̄] for any fixed z. Let

I(z, ·) := conv H(z, ·) be the convex hull of H(z, ·); thus, I(z, ·) is continuously differentiable

on [θ, θ̄], and Iθ(z, θ) is nondecreasing in θ. Define the generalized virtual surplus as

J̄o(z, θ) := Jo(0, θ) +

󰁝 z

0

Iθ(x, θ)dx.

Our first theorem characterizes the equilibrium outcome of the observed case.

Theorem 1. In the observed case, the seller-optimal equilibrium exists such that

zo(θ) =

󰀻
󰀿

󰀽
z̄(θ) if θ ≥ θo0

0 otherwise,
(4.1)

where z̄(θ) is the unique maximizer of J̄o(z, θ) and the cutoff type θo0 is either the maximal

root of z̄(θ) = 0 if it exists or θ otherwise. zo(θ) is nondecreasing and continuous on [θ, θ̄].

If z∗(θ) > 0, then θo0 = θ. If θo0 > θ, then zo(θo0) = z∗(θo0) = 0. In particular, when Jo(z, θ)

is regular, zo(θ) ≡ z∗(θ) on [θ, θ̄]. Then, for each zo(θ) with θ ∈ [θo0, θ̄],
5

T o(zo(θ)) = W o(zo(θ))− C(zo(θ), θ) +

󰁝 θ

θo0

Cθ(z
o(s), s)ds, (4.2)

where W o(zo(θ)) = E[Q(zo(θ), θ)] with the market belief updated by Bayes’ rule.

Theorem 1 states that the optimal allocation rule zo(θ) is continuous and coincides with

the unconstrained optimizer z∗(θ) under the regularity of Jo(z, θ). In the proof, we also show

that whenever zo(θ) ∕= z∗(θ), θ belongs to a pooling interval (i.e., an ironing region), so that

zo(θ) is constant in this interval. It thus follows from the continuity of zo(θ) that W o(z) is

discontinuous at such zo(θ). Then, by (4.2), T o(z) is also discontinuous at such zo(θ).

5For any off-path z > 0, it is conventional to simply assume that T o(z) = +∞.
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Since Gz ≥ Cz, we have Jo
z (z, θ) ≤ Sz(z, θ) for all θ ∈ [θ, θ̄], with equality holding at θ̄

only. This states, as established in the two-type example, that the worker’s isoprofit curve is

steeper than his indifference curve due to the information rent. Then, the next proposition

generalizes the previous result that zo(θ) exhibits downward distortion.

Proposition 1. In the observed case, the worker acquires less education than the first best.

Specifically, zo(θ) ≤ zfb(θ) on [θ, θ̄], with strict inequality on (θ, θ̄) and zo(θ̄) = zfb(θ̄).

4.2 Labor market does not observe tuition

We now turn to the unobserved case and focus on the seller-optimal separating equilibrium.

Similarly, define the virtual surplus in the unobserved case as

Ju(z, θ) := W (z)−G(z, θ).

The next theorem states that the seller-optimal separating equilibrium always exists.

Theorem 2. The seller-optimal separating equilibrium always exists, in which θu0 = θo0, and

zu(θ) is continuous and increasing on [θo0, θ̄] and satisfies the differential equation

Qz(z
u(θ), θ) +Qθ(z

u(θ), θ)θu′(zu(θ))−Gz(z
u(θ), θ) = 0 (4.3)

on (θo0, θ̄] with zu(θo0) = z∗(θo0), where θ
u(z) is the inverse of zu(θ), which is also differentiable

on (θo0, θ̄]. Then, for each zu(θ) with θ ∈ [θo0, θ̄], W
u(zu(θ)) = Q(zu(θ), θ) and

T u(zu(θ)) = W u(zu(θ))− C(zu(θ), θ) +

󰁝 θ

θo0

Cθ(z
u(s), s)ds. (4.4)

Theorem 2 indicates that the unobserved case shares the same cutoff type (i.e., θu0 = θo0)

and thus the same market coverage with the observed case. It also states that type θo0 chooses

the unconstrained optimal education level z∗(θo0). This initial condition uniquely pins down

the equilibrium education function zu(θ) and thus the equilibrium outcome.

Our third theorem presents the paper’s main result. In contrast with the observed case,

the worker acquires more education in the unobserved case. In particular, each inframarginal

type chooses strictly more education than in the observed case, as illustrated in Figure 2.

Theorem 3. In contrast with the observed case, the worker acquires more education in the

unobserved case. Specifically, zu(θ) ≥ zo(θ) on [θ, θ̄], with strict inequality for θ > θo0.

As an immediate result of Theorem 3, the school’s equilibrium payoff in the unobserved

case, denoted Πu, is lower than that in the observed case, denoted Πo. Formally, we have
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0

z(θ)

Mussa and Rosen, zmr(θ)

the first-best, zfb(θ)

the observed case, zo(θ)

the unobserved case, zu(θ)

Spence, zs(θ)

θ̄θmr
0θ θo0

Figure 2. This figure illustrates all the equilibrium education functions considered in this paper. The figure

assumes that Q(z, θ) = θz + z, C(z, θ) = z2 + z − θz, and θ ∼ U [0, 1]. As a result, zfb(θ) = θ, zs(θ) = 3θ/2,

zo(θ) = (3θ − 1)/2, zu(θ) = 2θ − 2/3, and zmr(θ) = 2θ − 1.

Corollary 1. In contrast with the observed case, the school obtains a strictly lower expected

profit in the unobserved case. That is, Πu < Πo.

In terms of the worker’s payoff, note that the worker gains more information rents since

he obtains more education. Formally, let U o(θ) and Uu(θ) be type θ’s equilibrium utility in

the observed and unobserved cases, respectively. By Theorem 3, for any θ ∈ (θo0, θ̄],

Uu(θ)− U o(θ) =

󰁝 θ

θo0

[Cθ(z
o(s), s)− Cθ(z

u(s), s)]ds > 0.

That is, the worker has higher utility in the unobserved case than in the observed case (see

Figure 3). This generalizes the knife-edge result of the two-type example. To summarize,

Corollary 2. Uu(θ) ≥ U o(θ) on [θ, θ̄], with strict inequality for θ > θo0.

Then, we show that education is more expensive in the observed case. Specifically, the

tuition scheme in the unobserved case is uniformly lower than that in the observed case on

the common interval of education, i.e., [z∗(θo0), z
∗(θ̄)] (see Figure 3). Formally, we have

Proposition 2. T o(z) ≥ T u(z) on [z∗(θo0), z
∗(θ̄)], with strict inequality for z > z∗(θo0).

Finally, we generalize the result that the equilibrium education levels of the unobserved

case are bounded above by that of Spence’s game (see Figure 2). Formally, we have
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0

U (θ)

the unobserved case, Uu(θ)

the observed case, Uo(θ)

θ θ̄θo0

(a) Worker’s utility

T (z)

0
zo(θ̄) zu(θ̄)0

the unobserved case, Tu(z)

the observed case, To(z)

(b) Tuition scheme

Figure 3. This figure compares the worker’s utility and tuition between the observed and unobserved cases.

The figure considers the same example as Figure 2. As a result, (a) Uo(θ) = 3
4 (θ−

1
3 )

2 and Uu(θ) = (θ− 1
3 )

2;

(b) T o(z) = 2z
3 and Tu(z) = − z2

4 + 2z
3 .

Proposition 3. In the unobserved case, the worker acquires less education than in Spence’s

signaling game. Specifically, zu(θ) ≤ zs(θ) on [θ, θ̄], with strict inequality for θ > θ.

The idea of Proposition 3 is simple. Note that the unobserved case is essentially Spence’s

game with higher marginal effort costs (i.e., Gz ≥ Cz); thus, the worker’s “indifference curve”

is steeper in the unobserved case than in Spence’s game, leading to lower education levels.

5 The economics of optimal pricing

To see the intuitions of the general results, it is instructive to investigate the optimal tuition

of each variant of our model. As a benchmark, we have shown that if tuition is fixed at the

marginal cost, then signaling will induce over-education. To restore the first-best outcome, a

social planner would levy Pigouvian taxes to undo the signaling effect (e.g., Spence (1974)).

Let T fb denote the welfare-maximizing tax on education. The marginal tax is equal to the

signaling effect at the first best, i.e.,

T fb′(z) = Qθ(z, θ
fb(z))θfb

′
(z), (5.1)

where θfb(z) is the inverse of zfb(θ), which is differentiable on [θ, θ̄].

Then, we consider the profit-maximizing school’s pricing strategy. In the observed case,

recall that the school undersupplies education due to the mechanism of monopoly screening.
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However, this outcome results from the interaction between screening and signaling. To see

the role of signaling, note that given T o, the subgame is essentially Spence’s game as if the

worker had a cost function given by C(z, θ) + T o(z). It follows from the same argument as

in Section 2.2 that the worker overinvests in education in terms of C(z, θ) + T o(z).6

However, Proposition 1 states that when both screening and signaling exist and exert the

opposite effects—screening induces under-education, but signaling induces over-education—

screening outweighs signaling. This is because as a Stackelberg leader, the school internalizes

the worker’s signaling activity when screening his type. To illustrate, assume for simplicity

that zo(θ) is increasing and, thus, T o(z) is differentiable. Then, by the first-order condition

of the worker’s optimal choice, for each z ∈ [zo(θo0), z
o(θ̄)], we have

T o′(z) = W o′(z)− Cz(z, θ
o(z)) =

d

dz
[Q(z, θo(z))]− Cz(z, θ

o(z)),

where θo(z) is the inverse of zo(θ), which is differential on [θo0, θ̄]. Substituting this equation

into the first-order condition of Jo(z, θ) with respect to z, we have

T o′(z) = Qθ(z, θ
o(z))θo′(z) +

1− F (θo(z))

f(θo(z))
[−Czθ(z, θ

o(z))] . (5.2)

On the right-hand side (RHS) of (5.2), the first term is the signaling effect, and the second

term is the marginal information rent extracted by the worker. Note that signaling induces

over-education, which harms the school’s profit in two ways: on the one hand, it reduces the

social surplus; on the other hand, it provides the worker with more information rents. Thus,

the optimal tuition scheme must undo these two effects, as indicated by (5.2). Because the

second term on the RHS of (5.2) is positive, comparing (5.2) with (5.1) indicates that the

profit-maximizing scheme “over-taxes” signaling and thus leads to under-education.

While screening outweighs signaling, signaling can in turn mitigate the distortion caused

by screening. To see this, consider an otherwise identical model assuming that now the labor

market also observes the worker’s ability. Therefore, the wage equals the actual productivity,

and signaling is eliminated. This means that the worker’s reservation price for education is

the social surplus. Since Szθ > 0, a higher-ability worker derives higher marginal utility from

education. Thus, the school has the same screening problem as in Mussa and Rosen (1978).

Analogously, the virtual surplus in Mussa and Rosen’s game is given by

Jmr(z, θ) := S(z, θ)− 1− F (θ)

f(θ)
Sθ(z, θ).

6To illustrate, consider the example in Figure 2. In terms of the total cost C(z, θ) + T o(z), the first-best

education level is zfb(θ) = θ − 1
3 , while zo(θ) = 3θ−1

2 . Thus, zo(θ) ≥ zfb(θ) with strict inequality on ( 13 , 1].
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Let zmr(θ) and θmr
0 be an optimal allocation rule and the associated cutoff type, respectively.

For simplicity, assume that both Jo(z, θ) and Jmr(z, θ) are regular.7 Thus, zmr(θ) and θmr
0

can be solved by pointwise maximization for Jmr(z, θ).

Then, we illustrate how the allocation in Mussa and Rosen’s game is different from that

in the observed case. On the extensive margin, since Sθ > −Cθ if z > 0, Jmr(z, θ) ≤ Jo(z, θ),

holding weakly on the boundary. Therefore, if θo0 > θ, then θmr
0 > θo0; that is, more types will

be excluded in Mussa and Rosen’s game. On the intensive margin, if Qzθ > 0 on [0, zfb(θ̄)],8

then zmr(θ) ≤ zo(θ) with strict inequality on [θo0, θ̄), meaning that under-education is more

significant in Mussa and Rosen’s game. These findings are illustrated in Figure 2.

For welfare comparison, recall that education is already undersupplied in the observed

case, yet the downward distortion is larger in Mussa and Rosen’s game; thus, the observed

case yields higher social welfare. In addition, since Jmr(zmr(θ), θ) ≤ Jo(zo(θ), θ) with strict

inequality on [θo0, θ̄), and θmr
0 ≥ θo0, it is readily confirmed that the school’s expected profit

is also higher in the observed case. In summary, we have the following proposition.

Proposition 4. Suppose both Jo(z, θ) and Jmr(z, θ) are regular and Qzθ > 0 on [0, zfb(θ̄)],

then under-education will be greater if signaling is eliminated. Specifically, zmr(θ) ≤ zo(θ),

with strict inequality on [θo0, θ̄). If θ
o
0 > θ, then θmr

0 > θo0 > θ. Moreover, the school’s expected

profit and welfare are strictly higher when signaling is present than otherwise.

Intuitively, when the labor market observes the worker’s ability, if a higher type mimics

a lower type by choosing the same education, he not only incurs a lower total cost than the

latter but also receives a higher wage due to his higher productivity. In contrast, when the

labor market does not observe the worker’s ability, the higher type can no longer directly

reap the benefit from higher productivity. Therefore, he acquires more education to signal

his ability. The signaling incentive dampens the worker’s temptation to mimic lower types.

Thus, the school provides lower information rents to the worker when signaling is present.

Formally, we have that for all θ ∈ [θ, θ̄] and z > 0,

1− F (θ)

f(θ)
[−Cθ(z, θ)]

󰁿 󰁾󰁽 󰂀
information rents with signaling

≤ 1− F (θ)

f(θ)
Sθ(z, θ)

󰁿 󰁾󰁽 󰂀
information rents without signaling

which holds with equality at θ̄ only. That is, signaling mitigates the screening distortion.9

7Given the model assumptions, Jmr(z, θ) is regular if Qzθθ ≤ 0.
8This condition is not restrictive; indeed, given that Qθ > 0 if z > 0 and Q(0, θ) ≡ 0, we have Qzθ > 0

for z ∈ [0, k] for some k > 0. Given this condition, Jmr
z (z, θ) < Jo

z (z, θ) on [0, zfb(θ̄)] for θ < θ̄.
9Rayo (2013) also considers the case where the signaling good provides intrinsic quality to the buyer in
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Recall that in Spence’s game, signaling reduces social welfare, as it causes over-education.

In the observed case, by contrast, signaling raises social welfare, relative to Mussa and Rosen,

since it mitigates the screening distortion. Hence, any instrument that attenuates signaling

is socially beneficial in the Spencian world but harmful in the observed case. For example,

students’ grades substitute for their education levels in signaling. Suppose grades become less

informative, e.g., due to grade inflation—an increasingly common phenomenon at American

colleges and universities,10—then signaling through education will be enhanced, as students

will attempt to separate themselves from others (Daley and Green, 2014). This implies that

coarse grading can be socially beneficial in the observed case by relieving under-education,11

whereas it is harmful in the Spencian world because it aggravates over-education.

Now, we turn to the unobserved case. Theorem 3 indicates that the worker obtains more

education in the unobserved case than in the observed case. This result is driven by a signal-

jamming effect: the school jams the worker’s signal when the labor market does not observe

the actual cost of education. To see the intuition, suppose the school lowers tuition so that

the worker chooses more education than in the initial state. When the labor market observes

the tuition change, it cuts wages, as any education level now corresponds to a lower-ability

worker. In contrast, when the labor market does not observe the tuition change, it does not

cut wages despite that tuition changes; thus, the worker is willing to pay more for additional

education. Conversely, if the school raises tuition so that education decreases, then the labor

market will raise wages in the observed case. As a result, the worker’s willingness to pay will

be lower in the unobserved case. This illustrates that the worker is more sensitive to tuition

changes in the unobserved case than in the observed case.

That is, the school faces more elastic demand in the unobserved case. This induces the

school to fool the labor market with secret price cuts. Specifically, the first-order condition

of the worker’s optimal choice means that T u′(z) = W u′(z)−Cz(z, θ
u(z)). Substituting this

equation into (4.3), and noting that W u(z) = Q(z, θu(z)), we have

T u′(z) =
1− F (θu(z))

f(θu(z))
[−Czθ(z, θ

u(z))] . (5.3)

addition to signaling value, as in our model. A critical difference is that the buyer’s preference in his model

satisfies additive separability in quality and signaling value, and thus, the allocations of quality and signal

interact only through the monotonicity constraint. It follows that the allocation of quality in Rayo’s model

coincides with that of Mussa and Rosen. That is, signaling cannot mitigate the screening distortion there.
10See, for example, Johnson (2006) and Rojstaczer and Healy (2010).
11Alternatively, Boleslavsky and Cotton (2015) shows that coarse grading can improve social welfare by

enhancing schools’ investments in education quality when schools compete in placing graduates.
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Equation (5.3) states that in the unobserved case, the marginal tuition equals the marginal

information rent extracted by the worker. In contrast to the observed case, as indicated by

the comparison between (5.3) and (5.2), the optimal tuition scheme in the unobserved case

does not undo the signaling effect. The reason is that the loss in total surplus caused by

over-education will be compensated by the labor market overpaying the worker, as employers

will overestimate the worker’s ability if the school secretly cuts tuition. In equilibrium, the

labor market correctly anticipates the school’s incentive and offers lower wages, as education

is inflated. This reduces the worker’s willingness to pay, strictly for the inframarginal types;

thus, the school gains lower profits. (5.3) also indicates that the marginal tuition vanishes at

the highest education level, meaning that the school offers discounts (i.e., T (z)/z is declining)

for higher quantities, as in the classic screening model of Maskin and Riley (1984).

5.1 Policy implications

Our main results have meaningful implications for the price transparency of signaling goods.

Proposition 2 and Corollary 2 mean that policies that improve the transparency of net prices

at colleges and universities through mandatory disclosure may unintentionally induce more

expensive education and harm students. These policies, such as U.S. Code § 1015a, require

colleges to publicly disclose their net prices, which are usually not previously observed by

employers. On the one hand, this reduces the search costs of students, thereby enhancing the

competition between schools and lowering prices. On the other hand, this also allows schools

to commit to high prices and not dilute the signaling value of a high-cost education by means

of fee waivers, financial aid and so forth. It is thus possible that such policies ultimately raise

education costs and harm students. Hence, policymakers should not overlook the unintended

negative effects of these mandatory disclosure policies.

Next, consider social welfare. On the one hand, Proposition 1 and Theorem 3 imply that

zo(θ) < zu(θ) < zfb(θ) in the right neighborhood of θo0. That is, under-education is smaller

at the left tail of the support in the unobserved case than in the observed case. Thus, welfare

is higher in that region in the unobserved case. On the other hand, because zo(θ̄) = zfb(θ̄),

zu(θ) > zfb(θ) in the left neighborhood of θ̄; that is, there is over-education at the right tail

of the support in the unobserved case. It follows from the continuity of zo(θ) and zu(θ) that

welfare is lower in that region in the unobserved case. In general, whether the observed or

unobserved case yields higher social welfare remains ambiguous.

Recall that in the observed case, signaling can reduce the screening distortion. Naturally,

one might ask will signaling being more intense lead to more distortion cuts in the observed
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case but more overinvestment in the unobserved case? In Appendix D, we illustrate that if

signaling is sufficiently intense (e.g., there is significant overinvestment in Spence’s game),

then the observed case yields higher social welfare than the unobserved case, and both cases

yield higher social welfare than Spence’s game. Among the three cases, as signaling intensity

changes from low to high, the case that yields the highest social welfare will be Spence’s game,

the unobserved case, and the observed case, respectively.

This finding thus has welfare implications for the market structure of signals. When the

market is served by perfectly competitive sellers of signals, the equilibrium is predicted by

Spence’s model. In contrast, when the market is served by a monopolist, the equilibrium is

predicted by the current model, which suggests that when the buyer’s signaling incentive is

relatively strong, monopoly can yield higher social welfare than a competitive market. Thus,

promoting competition in a signaling good market is not necessarily socially beneficial.

6 Discussion

In this section, we address some remaining technical points of the paper. First, we study the

equilibrium selection in the unobserved case. Then, we explore some extensions. Specifically,

we consider the cases of nonessential signals and unproductive signals and the case in which

the seller is partially profit-maximizing.

6.1 Equilibrium selection in the unobserved case

In the unobserved case, we focus on the seller-optimal separating equilibrium, which has the

following important properties. Among all separating equilibria of the unobserved case, this

equilibrium leads to the highest payoff for the school, the largest market coverage (i.e., the

lowest cutoff type), and the lowest education level for every participating type. In addition,

the equilibrium is the Riley outcome of the unobserved case, as the cutoff type θo0 chooses

the “full-information” optimum z∗(θo0). In particular, if one replaces θ with θo0 and C(z, θ)

with G(z, θ) in Spence’s game, then the seller-optimal separating equilibrium is indeed the

least-cost separating equilibrium. Finally, under certain conditions, this equilibrium is also

the unique continuous equilibrium. A formal argument is provided in Appendix C.

However, under some conditions, there may also exist a continuum of pooling equilibria

and separating equilibria. In this regard, we propose a novel refinement, quasi-divinity,12 to

refine the set of equilibria. The definition of quasi-divinity is given as follows.

12I am indebted to Prof. John Riley for his exceptional doctoral class at UCLA that inspired this concept.
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Definition 1. In the unobserved case, an equilibrium satisfies quasi-divinity if there does not

exist an off-path signal ẑ, a receiver’s response ŵ, and a positive-measure subset Θ̂ ⊂ [θ, θ̄],

satisfying the following conditions:

(i) The allocation of signals

zd(θ) =

󰀻
󰀿

󰀽
ẑ if θ ∈ Θ̂

zu(θ) otherwise

is nondecreasing in θ.

(ii) ŵ −G(ẑ, θ) > W u(zu(θ))−G(zu(θ), θ) = Ju(zu(θ), θ) if and only if θ ∈ Θ̂.

(iii) ŵ < Eẑ[Q(ẑ, θ)|θ ∈ Θ̂], with the expectation formed under any quasi-divine belief, i.e.,

any receiver’s posterior belief that has a distribution function F ẑ with supp(F ẑ) = Θ̂.

In other words, Definition 1 states that an equilibrium fails quasi-divinity if there exists

an off-path education level and a wage such that the school can make a profitable deviation

by choosing some tuition scheme under which a subset of worker types is willing to choose the

off-path education level for that wage, whereas all the other types prefer their equilibrium

outcomes, and that the employers are willing to offer that wage for that education level, so

long as they believe that they are facing a type from that subset, no matter how pessimistic

such a belief is. It is worth noting that a deviating type θ ∈ Θ̂ may be worse off than in the

original equilibrium, whereas he prefers the outcome (ẑ, ŵ) to any other outcome (z,W u(z))

under the new tuition scheme chosen by the school.

The idea of quasi-divinity is as follows. By choosing the off-path signal, the worker sends

an implicit message to the employers: “Although you cannot observe the tuition scheme, it

would be strictly profitable for you to offer me ŵ. This is because under the tuition scheme

that the school actually offers, the set of types who prefer (ẑ, ŵ) to any other pair (z,W u(z))

is Θ̂, and for any quasi-divine belief you may have, you will receive a payoff strictly higher

than your equilibrium payoff, i.e., Eẑ[Q(ẑ, θ)|θ ∈ Θ̂]− ŵ > 0.” Anticipating the hypothetical

speech by the worker and that the employers would think it through, the school has indeed an

incentive to choose some tuition scheme to implement zd(θ) given the new wage, as doing so

can yield a strictly higher profit while making the worker’s statement truthful. Specifically,

the monotonicity of zd(θ) ensures that the new allocation is implementable and that Θ̂ has

a positive measure, combined with condition (ii) of Definition 1, ensures that the school will

be strictly better-off than in the original equilibrium, should the employers offer ŵ for ẑ.
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Quasi-divinity is closely related to the standard refinements for signaling games, such

as universal divinity (Banks and Sobel, 1987) and the Intuitive Criterion (Cho and Kreps,

1987). The key difference is that quasi-divinity directly examines the receiver’s responses off

the equilibrium path, instead of restricting the off-path beliefs. The critical test is whether

there is an off-path signal and a subset of buyer types such that the receiver has a dominant

response in terms of quasi-divine beliefs, and the seller can strictly profit by inducing only

those types to choose the off-path signal. Furthermore, quasi-divine belief is less restrictive

than divine belief, as the latter includes beliefs that place probability one on a single type.

But in our continuous-type setting, any response that yields a strictly higher virtual surplus

than the equilibrium level at some type also makes it more profitable at each type in a small

neighborhood. In this regard, quasi-divinity is more applicable to the current model.

The next theorem indicates that within the set of the equilibria where the allocation zu(θ)

is piecewise continuous (or simply equilibria), the seller-optimal separating equilibrium is the

unique equilibrium (outcome) that satisfies quasi-divinity. To summarize,

Theorem 4. In the unobserved case, the unique equilibrium that satisfies quasi-divinity is

the seller-optimal separating equilibrium.

We now sketch the proof and provide details in Appendix B. There are two possibilities.

First, if the highest type θ̄ belongs to a pooling interval, then by the single-crossing property,

for sufficiently high types, there exists a ẑ > zu(θ̄) and a dominant wage ŵ with respect to

quasi-divine beliefs such that the school can profitably induce those types to deviate to ẑ.

Suppose now θ̄ belongs to a separating interval [θ1, θ̄] for some θ1 ≥ θu0 . If the equilibrium is

not the seller-optimal separating equilibrium, then we have that zu(θ) is discontinuous at θ1

with zu(θ1) > z∗(θ1). Again, by the single-crossing property, for all types in a neighborhood

of θ1, there exists a ẑ slightly lower than zu(θ1) and a dominant wage such that the school

can profitably induce those types to deviate to ẑ. Finally, for the seller-optimal separating

equilibrium, since the cutoff type θo0 has achieved the full-information optimum z∗(θo0), for

sufficiently pessimistic quasi-divine beliefs, there does not exist any off-path signal to which

the school can profitably induce some types to deviate. That is, the seller-optimal separating

equilibrium is the unique equilibrium that satisfies quasi-divinity. In particular, for discrete

types, since each type has a positive measure, quasi-divinity can be applied by replacing Θ̂

with a single type and the support of F ẑ with a singleton. It can be shown that the adapted

procedure is essentially the same as classic refinements such as universal divinity, and that

the seller-optimal separating equilibrium is uniquely selected, as in the two-type example.
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6.2 Nonessential signals

Here, we relax the model assumption that Q(0, θ) ≡ 0 and assume instead that Qθ > 0 for

all (z, θ) ∈ R+ × [θ, θ̄], with Q(0, θ) normalized to 0. We start with the observed case.

Suppose z∗(θ) > 0, then the allocation given by (4.1) also constitutes the seller-optimal

equilibrium of this case. To show this, assume that for all z outside the range of zo(θ), the

school charges prohibitively high prices and the labor market has the worst belief such that

the worker’s outside option has utility Q(0, θ) = 0. It follows that zo(θ) with θo0 = θ solves

the school’s problem and yields the highest possible equilibrium payoff for the school.

Now consider the case in which inf{θ|z∗(θ) > 0} > θ. Denote the infimum θ0, and define

Π̄o := F (θ0)E[Q(0, θ)|θ ≤ θ0] +

󰁝 θ̄

θ0

Jo(z̄(θ), θ)dF (θ),

where z̄(θ) is given as in Section 4.1. It can be shown that for any fixed δ > 0, there exists

a subgame associated with some tuition scheme in which the school’s equilibrium payoff is

greater than Π̄o − δ (see Lemma 2 in Section B). This implies that if an equilibrium exists,

then there is an equilibrium in which Πo ≥ Π̄o − δ.

Thus, to achieve the seller-optimal equilibrium (as δ → 0), we allow the school to charge

a fixed fee for zero education, as if the school could sell the worker a certification with no

information disclosure as in Lizzeri (1999). Observing that the worker paid the fixed fee, the

labor market receives a simple message that the worker is certified by the school and, thus,

offers a wage equal to the average productivity of those who paid the fee. Assume that the

labor market regards a worker with neither education nor a certification as the lowest type.

Thus, the optimal cutoff type is θo0 = θ0, and the optimal fixed fee equals E[Q(0, θ)|θ ≤ θ0]

such that any type θ ≤ θ0 will be indifferent. Then, the allocation given by (4.1), combined

with the fixed fee, leads to the seller-optimal equilibrium such that Πo = Π̄o. Note that in

the equilibrium, the market is fully covered and consists of two segments:

(a) The certification segment, [θ, θo0], where the worker pays a fixed fee for zero education.

(b) The education segment, (θo0, θ̄], where the worker purchases a positive education level.

As in Lizzeri (1999), the certifier reveals nothing about the agent’s type and extracts all

the information rents. However, whereas this extreme equilibrium outcome is sustained by a

particular belief in our model, it is the unique equilibrium outcome under certain conditions

in Lizzeri’s (Lizzeri, 1999, Theorem 3). This is because in contrast to our model, in Lizzeri’s,

the certifier can truthfully reveal the agent’s type at zero cost and, thus, can always induce
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higher types to participate by revealing the highest type with relatively high probability and

the other types with sufficiently low probability.

Now, we turn to the unobserved case. Given the nature of the information structure, we

shut down signaling through certification (money burning); thus, again, T (0) = 0. Suppose

an equilibrium exists, then the school’s expected profit is given by

Πu =

󰁝 θ̄

θu0

Ju(zu(θ), θ)dF (θ)− [1− F (θu0 )]E[Q(0, θ)|θ ≤ θu0 ],

where the worker’s reservation utility, E[Q(0, θ)|θ ≤ θu0 ], is constant given the market belief.

We claim that if θu0 > θ, then zu(θ) jumps discontinuously at θu0 with zu(θu0 ) > z∗(θu0 ) (see

Lemma 3 in Section B). Then, analogous to Theorems 2 and 4, we have the following result.

Theorem 2′. In the unobserved case, there exists a unique equilibrium that satisfies quasi-

divinity in which zu(θ) is continuous and increasing on [θ, θ̄] and satisfies (4.3) on (θ, θ̄],

with the initial condition (θu0 , z
u(θu0 )) = (θ, z∗(θ)).

Similarly, Theorem 2′ indicates that the unique equilibrium that satisfies quasi-divinity

is the Riley outcome, that is, the separating equilibrium in which the cutoff type θu0 chooses

the full-information optimum z∗(θu0 ). Under nonessential education, if θ
u
0 > θ, then θu0 must

choose a higher education level than z∗(θu0 ) such that the school has no incentive to induce

lower types to mimic θu0 . This in turn implies that in the Riley outcome, θu0 = θ, and thus,

zu(θ) = z∗(θ) ≥ zo(θ). Then, analogous to Theorem 3, we have the following result.

Theorem 3′. In contrast with the observed case, the worker acquires more education in the

unobserved case. Specifically, zu(θ) ≥ zo(θ) on [θ, θ̄], with strict inequality for θ > θ.

Then, one can show analogously that in the unobserved case, the school receives a lower

expected profit while the worker obtains higher utility, and the tuition is lower than in the

observed case (as stated by Corollaries 1 and 2, and Proposition 2, respectively).

6.3 Unproductive signals

Now, we consider the case where education is unproductive, i.e., Qz(z, θ) ≡ 0, which can be

regarded as a limit case of nonessential education. Accordingly, we rewrite the productivity

function as Q(θ) and assume that Qθ > 0 for all (z, θ) with Q(θ) normalized to 0.

In the observed case, because z∗(θ) ≡ 0, the seller-optimal equilibrium contains only the

certification segment: zo(θ) ≡ 0, and the school charges a certification fee equal to E[Q(θ)].

That is, the school fully extracts the surplus with no information disclosure at all.
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In the unobserved case, we have that both Theorems 2′ and 3′ still hold here; thus, the

implications for tuition, and the school and worker’s payoffs remain unchanged. Moreover,

because zu(θ) > zo(θ) = zfb(θ) on (θ, θ̄], the unobserved case unambiguously yields a lower

social welfare than the observed case. In addition, it is easy to show that zu(θ) ≤ zs(θ) with

strict inequality on (θ, θ̄]. Therefore, Spence’s game yields lower social welfare than both the

observed and unobserved cases.

6.4 Partially profit-maximizing seller

In the application of job market signaling, we assume that the school maximizes its expected

profit. In reality, however, schools are typically not pure profit-maximizers. To this end, we

study the school’s pricing strategy when its objective is a weighted average of its profit and

the worker’s utility. Formally, given a wage schedule W , the school solves

max
z(θ)

󰁝 θ̄

θ

[W (z)− C(z, θ)− U(θ)] dF (θ) + µ

󰁝 θ̄

θ

U(θ)dF (θ),

where µ ∈ (0, 1] denotes the relative Pareto weight. In particular, µ = 0 leads to the original

model in which the school maximizes its profit; µ = 1 means that the school maximizes the

joint surplus of the two parties. This variant thus only differs in that G(z, θ) is replaced by

G(z, θ;µ) := C(z, θ) + (1− µ)
1− F (θ)

f(θ)
[−Cθ(z, θ)] .

It is readily confirmed that for all µ ∈ (0, 1], Gz > 0, Gzz > k for some k > 0, and Gzθ < 0.

Thus, all the results in Section 4 remain unchanged up to µ. It is easy to show that in both

the observed and unobserved cases, as µ increases, the worker chooses more education and

obtains higher utility. Intuitively, as the school places greater weight on the worker’s payoff,

the worker can receive more education, thereby extracting more rents.

However, an increase in µ has qualitatively different welfare implications in the observed

and unobserved cases. In the observed case, as µ increases, the screening distortion decreases

and social welfare increases. In particular, when the school maximizes the joint surplus of the

worker and itself (µ = 1), the outcome is socially optimal. In the unobserved case, however,

as µ increases from 0 to 1, the equilibrium switches from that of the original unobserved case

to that of Spence’s game. As a result, the welfare implication is ambiguous. In particular, if

the original unobserved case yields higher social welfare than Spence’s game, then a profit-

maximizing school might be more socially beneficial than a school that maximizes the joint

surplus of itself and its students since in the latter case, the school charges such low tuition

that there is significant over-education.
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7 Conclusion

In this paper, we developed classic signaling models by letting a strategic player affect the

cost of signaling. A seller chooses a price scheme for a good, and a buyer with a hidden type

chooses how much to purchase as a signal to receivers. The equilibrium depends critically

on whether receivers observe the price scheme. In the observed case, the seller internalizes

signaling in screening, causing a downward distortion. However, such distortion is smaller

than that in the case where receivers also observe the buyer’s type. In the unobserved case,

the buyer is more sensitive to price changes than in the observed case. This leads to a more

elastic demand for signals and provides the seller with an incentive to cut prices. To refine

the set of equilibria, we proposed a new refinement, quasi-divinity. In equilibrium, the buyer

chooses a higher quantity and obtains higher utility than in the observed case, whereas the

seller gains lower profits than in the observed case. We also showed that price transparency

can be socially beneficial and social welfare can be higher in a monopoly market than in a

competitive market when the buyer’s signaling incentive is relatively strong. Our framework

can be applied to schools choosing tuition, retailers selling luxury goods, media companies

selling advertising messages, and to other vertical markets in which signaling prevails.
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A Appendix

A Proofs for Sections 4 and 5

Proof of Theorem 1

Proof. Given our assumptions, Jo(z, θ) is strictly concave in z. It follows from Toikka (2011,

Theorem 4.4) that the school’s problem boils down to pointwise maximization for J̄o(z, θ).

In addition, J̄o(z, θ) is also strictly concave in z and thus has a unique maximizer on R+,

denoted z̄(θ), which is continuous and nondecreasing on [θ, θ̄]. Moreover, if z̄(θ) ∕= z∗(θ) for

some θ, then H(z̄(θ), θ) and I(z̄(θ), θ) differ in a neighborhood of θ, in which Iθ(z̄(θ), θ) is

flat; thus, z̄(θ) is constant in this neighborhood. That is, if z̄(θ) ∕= z∗(θ), then θ belongs to

a pooling interval; outside these intervals, z̄(θ) = z∗(θ). Note that Jo
θ (z, θ) > 0 if z > 0, and

that Jo(0, θ) ≡ 0. It follows from the envelope theorem that Jo(z̄(θ), θ) is nondecreasing in θ

and nonnegative. Thus, the cutoff type θo0 is either the maximal root of Jo(z̄(θ), θ) = 0 if it

exists or θ otherwise. In particular, if θo0 > θ, then we have z̄(θo0) = z∗(θo0) = 0. Suppose not,

then z̄(θo0) > z∗(θo0) > 0, as Jo(z, θ) is strictly concave in z; thus, Jo(z, θo0) > 0 on (0, z̄(θo0)).

Then, the school can profit by assigning any z ∈ (0, z̄(θo0)) to some neighborhood of θo0 with

the monotonicity still holding, a contradiction. It follows that θo0 is either the maximal root

of z̄(θ) = 0 if it exists or θ otherwise. Moreover, if z∗(θ) > 0, then Jo(z∗(θ), θ) > 0 because

Jo(0, θ) ≡ 0 and Jo(z, θ) is strictly concave in z. Since Jo(z∗(θ), θ) is increasing in θ, we have

Jo(z∗(θ), θ) > 0 for all θ; thus, z∗(θ) > 0 on [θ, θ̄]. This implies that if z∗(θ) > 0, then we

have θo0 = θ and z̄(θ) ≤ z∗(θ). This completes the characterizations of zo(θ) and θo0. Then,

the characterizations of T o and W o follow immediately. Thus, the theorem is proven.

Proof of Proposition 1

Proof. Note that Jo
z (z, θ) is lower than Sz(z, θ), holding weakly on the boundary. Thus, we

have z∗(θ) ≤ zfb(θ) on (θ, θ̄], with equality holding at θ̄ only. In addition, Jo
z (z, ·) must be

increasing for θ close to θ̄ since Jo
zθ(z, θ̄) > 0. Thus, H(z, θ) coincides with I(z, θ) in the left

neighborhood of θ̄, meaning that zo(θ) is increasing near θ̄, and thus, zo(θ̄) = zfb(θ̄). Note

further that any θ satisfying z∗(θ) < zo(θ) belongs to some pooling interval [α, β] such that

zo(θ) = min{z∗(α), z∗(β)}.13 Because zfb(θ) ≥ z∗(θ), zo(θ) ≤ zfb(θ) on [α, β]. Outside these

pooling intervals, zo(θ) = z∗(θ) ≤ zfb(θ). Note that z∗(θ) < zfb(θ) on (θ, θ̄). It follows that

zo(θ) ≤ zfb(θ) on (θ, θ̄], with equality holding at θ̄ only. Thus, the proposition is proven.

13It is possible that θ belongs to a pooling interval with zo(θ) < z∗(θ).
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Proof of Theorem 2

Proof. Let J(θ, θ̂, z) := Q(z, θ̂)−G(z, θ) be the virtual surplus of type θ if he is believed as

type θ̂ and chooses education level z. In particular, J(θ, θ, z) ≡ Jo(z, θ). Given the model

assumptions, we have Jzz(θ, θ̂, z) < −k for some k > 0, Jθ̂(θ, θ̂, z) = Qθ(z, θ̂) > 0 if z > 0,

Jzθ(θ, θ̂, z) = −Gzθ(z, θ) > 0, and Jz(θ, θ̂, z)/Jθ̂(θ, θ̂, z) is increasing in θ. For the moment,

we restrict our attention to the domain [θo0, θ̄] × [θo0, θ̄] ∪ {θ} × R+, which incurs no loss of

generality if θo0 = θ. By Mailath and von Thadden (2013, Theorems 2, 5 and 6), there exists

a separating equilibrium in which zu(θ) is continuous and increasing on [θo0, θ̄], and satisfies

(4.3) on (θo0, θ̄] with zu(θo0) = z∗(θo0); z
u(θ) is unique given (4.3) and the initial condition. It

follows from (4.3) that the inverse of zu(θ), θu(z), is also differentiable on (θo0, θ̄]. In terms of

any off-path z > 0, assume simply that the labor market holds the worst belief θ. Then, the

wage schedule and the tuition scheme can be characterized immediately. Now, we consider

the full domain [θ, θ̄]2 × R+ if θo0 > θ. Clearly, the incentive of any type θ ≥ θo0 will not be

affected. It thus remains to examine whether the school can profit by assigning some z > 0

to some type θ ∈ [θ, θo0). Fix such θ. For any off-path z > 0, J(θ, θ, z) ≤ J(θo0, θ, z) ≤ 0, thus

a profitable deviation does not exist. On the other hand, if z = zu(θ′) for some θ′ ≥ θo0, then

by Gzθ < 0, J(θ, θ′, z) − J(θ, θ, 0) ≤ J(θo0, θ
′, z) − J(θo0, θ

o
0, 0) ≤ 0. The second inequality is

due to that z∗(θo0) = 0 if θo0 > θ and type θo0’s IC constraint. Thus, it is indeed optimal for

the school to exclude all θ ∈ [θ, θo0). This proves the existence of such an equilibrium.

Finally, we show that the above equilibrium is the most profitable for the school among

all separating equilibria. By Corollary 3 in Appendix C, a separating equilibrium’s outcome

is uniquely pinned down by the cutoff type θu0 . Moreover, in each separating equilibrium of

the unobserved case, θu0 ≥ θo0. Suppose in addition to θo0, there exists an equilibrium cutoff

type θ̂u0 > θo0. Let z
u
1 (θ) and zu2 (θ) be the equilibrium education functions associated with θo0

and θ̂u0 , respectively. By Mailath and von Thadden (2013, Theorems 2), we have that both

zu1 (θ) and zu2 (θ) satisfy (4.3) on (θu0 , θ̄]. Moreover, by Corollary 3, zu(θ̂u0 ) > z∗(θo0). It follows

from Hartman (1964, Corollary 4.2, page 27) that zu2 (θ) > zu1 (θ) on [θ̂u0 , θ̄]. By the proof of

Theorem 3, zu2 (θ) > zu1 (θ) ≥ z∗(θ) on [θ̂u0 , θ̄]. Note that Ju(zu(θ), θ) = Jo(zu(θ), θ) on [θ̂u0 , θ̄].

Since Jo(z, θ) is strictly concave in z, Ju(zu1 (θ), θ) > Ju(zu2 (θ), θ) on (θo0, θ̄]. Let Πu
1 and Πu

2

denote the school’s equilibrium payoff associated with θo0 and θ̂u0 , respectively. Thus,

Πu
1 − Πu

2 =

󰁝 θ̄

θo0

Ju(zu1 (θ), θ)dF (θ)−
󰁝 θ̄

θ̂u0

Ju(zu2 (θ), θ)dF (θ) > 0.

That is, the separating equilibrium with the cutoff type θo0 yields the highest payoff for the

school among all separating equilibria. Thus, the theorem is proven.
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Proof of Theorem 3

Proof. We first show that in each separating equilibrium, zu(θ) ≥ z∗(θ) on [θu0 , θ̄] with strict

inequality for θ > θu0 . Since Ju(zu(θ), θ) = Jo(zu(θ), θ) and Jo(z, θ) is strictly concave in z,

it suffices to show that Jo
z (z

u(θ), θ) ≤ 0 with strict inequality for θ > θu0 . From Corollary 3,

zu(θ) satisfies (4.3) on (θu0 , θ̄]. Then, for each θ ≥ θu0 , we have

Jo
z (z

u(θ), θ) = Qz(z
u(θ), θ)−Gz(z

u(θ), θ)

≤ Qz(z
u(θ), θ) +Qθ(z

u(θ), θ)θu′(zu(θ))−Gz(z
u(θ), θ) = 0.

The inequality is because zu(θ) is nondecreasing; the last equality is due to (4.3). Moreover,

for θ > θu0 , the second term in (4.3) is positive; thus, the above inequality becomes strict.

Then, we prove that in each separating equilibrium, zu(θ) ≥ zo(θ) on [θu0 , θ̄] with strict

inequality for θ > θu0 . By Corollary 3, we have zu(θu0 ) ≥ max{z∗(θu0 ), zo(θu0 )}. Suppose there
exists a θ̃ ∈ (θu0 , θ̄] such that zu(θ̃) ≤ zo(θ̃), then θ̃ belongs to a pooling interval with respect

to zo(θ) since zu(θ) > z∗(θ) on (θu0 , θ̄]. Let α be the left end of this interval. Since zu(θ) is

increasing on [θu0 , θ̄], z
u(θ) < zo(θ) on [α, θ̃). This implies that α > θu0 since zu(θu0 ) ≥ zo(θu0 ).

Then, by the continuity of zo(θ), we have z∗(α) = zo(α) > zu(α), a contradiction. Therefore,

zu(θ) ≥ zo(θ) on [θu0 , θ̄] with strict inequality for θ > θu0 . In particular, in the seller-optimal

separating equilibrium, we have θu0 = θo0. It follows that zu(θ) ≥ zo(θ) on [θ, θ̄] with strict

inequality for θ > θo0. Thus, the theorem is proven.

Proof of Proposition 2

Proof. For each z ∈ [z∗(θo0), z
∗(θ̄)], define θo(z) := inf{θ|zo(θ) ≥ z}. Since Cθ = 0 if z = 0,

by (4.2) and (4.4), for each z ∈ [z∗(θo0), z
∗(θ̄)], T o(z)− T u(z) equals

W o(z)−W u(z)− [C(z, θo(z))− C(z, θu(z))] +

󰁝 θo(z)

θ

Cθ(z
o(s), s)ds−

󰁝 θu(z)

θ

Cθ(z
u(s), s)ds

≥ W o(z)−W u(z)− [C(z, θo(z))− C(z, θu(z))] +

󰁝 θo(z)

θu(z)

Cθ(z
o(s), s)ds

= W o(z)−W u(z) +

󰁝 θo(z)

θu(z)

[Cθ(z
o(s), s)− Cθ(z, s)]ds

≥ W o(z)−W u(z).

The first inequality dues to Theorem 3 and that Cθ < 0 if z > 0; the second inequality dues

to that Czθ < 0, θo(z) ≥ θu(z) and zo(θ) ≤ z for all θ ∈ [θu(z), θo(z)]. Moreover, since wage

equals the worker’s expected productivity, we have W o(z) ≥ W u(z) on [z∗(θo0), z
∗(θ̄)] with

strict inequality for z > z∗(θo0). Thus, the proposition is proven.
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Proof of Proposition 3

Proof. We only need to prove that zu(θ) < zs(θ) on (θo0, θ̄]. Rearranging (2.4) and (4.3), we

can derive zs(θ) and zu(θ) through the initial value problems:

zs′ =
Qθ(z, θ)

Cz(z, θ)−Qz(z, θ)
and zu′ =

Qθ(z, θ)

Gz(z, θ)−Qz(z, θ)

with the respective initial points (θo0, z
s(θo0)) and (θo0, z

u(θo0)). Note that Cz(z, θ) ≤ Gz(z, θ)

with strict inequality for θ < θ̄. Further, by Proposition 1 and Theorem 2, zs(θo0) ≥ zu(θo0).

It then follows from Hartman (1964, Corollary 4.2, page 27) that zs(θ) ≥ zu(θ) on [θo0, θ̄]

with strict inequality for θ > θo0. Thus, the proposition is proven.

Proof of a generalized version of Proposition 4

Here, we consider a generalized version of Mussa and Rosen’s game in Section 5. Suppose

after the worker chooses education, the labor market can observe the worker’s ability with

probability p ∈ (0, 1]. For example, the worker takes a test in school. With probability p,

the test is perfectly informative and thus reveals the worker’s ability; otherwise, the test is

completely uninformative about the worker’s ability. Thus, p measures the informativeness

of the test; in particular, p = 1 corresponds to Mussa and Rosen’s game. For simplicity, we

assume that p is independent of the worker’s ability and education level. From the worker’s

(and the school’s) perspective, his expected wage for education level z is given by

E[W (z)] = pQ(z, θ) + (1− p)Eθ[Q(z, θ)],

where the second expectation stands for the labor market’s expectation of the worker’s

productivity. Then, given some tuition scheme T , the worker’s expected utility is given by

u(z, θ) = E[W (z)]− C(z, θ)− T (z). Analogous to Section 5, the virtual surplus is now

Jmr(z, θ) := S(z, θ)− 1− F (θ)

f(θ)
[pQθ(z, θ)− Cθ(z, θ)] .

Assume that both Jo(z, θ) and Jmr(z, θ) are regular. Therefore, zmr(θ) and θmr
0 can be solved

by pointwise maximization for Jmr(z, θ). On the extensive margin, if θo0 > θ, then θmr
0 > θo0.

On the intensive margin, if Qzθ > 0 on [0, zfb(θ̄)], then zmr(θ) ≤ zo(θ) with strict inequality

on [θo0, θ̄). Clearly, these differences will expand as p increases.

Indeed, the optimal allocation zmr(θ) varies continuously from that of the observed case

to that of Mussa and Rosen’s game as p increases from 0 to 1 (i.e., as the test becomes more

informative). In other words, the screening distortion is intensified if signaling is attenuated.

In summary, we have the following generalized version of Proposition 4.
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Proposition 4′. Suppose both Jo(z, θ) and Jmr(z, θ) are regular and Qzθ > 0 on [0, zfb(θ̄)],

then under-education will be greater if signaling is attenuated. Specifically, zmr(θ) ≤ zo(θ),

with strict inequality on [θo0, θ̄). If θ
o
0 > θ, then θmr

0 > θo0 > θ. Moreover, the school’s expected

profit and welfare are strictly higher in the observed case than in the generalized Mussa and

Rosen game. These differences will expand as p increases (i.e., as signaling is attenuated).

B Proofs for Section 6

Proof of Theorem 4

Proof. According to Appendix C, there are two cases to consider. First, suppose θ̄ belongs

to a pooling interval [θ1, θ̄], then fix a type α close to θ̄, and choose some ẑ > z̃ such that

Q(ẑ,α)−G(ẑ,α) = W u(z̃)−G(z̃,α),

where z̃ > 0 is the equilibrium education level for θ ≥ θ1 and W u(z̃) = E[Q(z̃, θ)|θ ≥ θ1]. It

is clear that such ẑ exists. Let ŵ = Q(ẑ,α). For any θ > α, we have

ŵ −G(ẑ, θ)− [W u(z̃)−G(z̃, θ)] > ŵ −W u(z̃)− [G(ẑ,α)−G(z̃,α)] = 0.

The inequality is due to that Gzθ < 0 and ẑ > z̃. Analogously, for any θ ≤ α, we have

ŵ −G(ẑ, θ)− [W u(zu(θ))−G(zu(θ), θ)] ≤ ŵ −G(ẑ, θ)− [W u(z̃)−G(z̃, θ)] ≤ 0.

The first inequality is due to the optimality of zu(θ). Then, define Θ̂ := (α, θ̄], and thus,

ŵ −G(ẑ, θ) > W u(zu(θ))−G(zu(θ), θ) = Ju(zu(θ), θ)

if and only if θ ∈ Θ̂. Moreover, note that for any quasi-divine belief,

Eẑ[Q(ẑ, θ)|θ > α] > Q(ẑ,α) = ŵ.

Choose the allocation zd(θ) such that zd(θ) = ẑ if θ ∈ Θ̂; zd(θ) = zu(θ) otherwise. Because

ẑ > z̃, zd(θ) is nondecreasing. It follows from Definition 1 that any equilibrium such that θ̄

belongs to a pooling interval fails quasi-divinity.

Second, suppose θ̄ belongs to a separating interval [θ1, θ̄]. There are two cases. First, the

equilibrium is not the seller-optimal separating equilibrium. Define J(θ, θ̂, z) as in the proof

of Theorem 2. If θ1 > θu0 , then by Lemma 5 in Appendix C, zu(θ) is discontinuous at θ1 and

constant in the left neighborhood of θ1. Fix a type α < θ1 that is close to θ1, then

J(α,α, zu(θ1)) < J(α, θ1, z
u(θ1)) ≤ Ju(zu(α),α) < J(α,α, zu(α)).
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The first inequality is because Jθ̂ > 0 if z > 0; the second is due to the optimality of zu(α);

the last is because α belongs to a pooling interval with zu(α) > 0 and α is close to θ1. Then

by the intermediate value theorem, there exists a ẑ ∈ (zu(α), zu(θ1)) such that

Q(ẑ,α)−G(ẑ,α) = Ju(zu(α),α).

If θ1 = θu0 , then zu(α) = 0 and zu(θ1) is the maximal root of Jo(z, θ1) = 0 by Corollary 3.

Let ẑ be the maximal root of Jo(z,α) = 0. Clearly, ẑ ∈ (0, zu(θ1)), and thus it satisfies the

above equation. Then, let ŵ = Q(ẑ,α). Since Gzθ < 0, by the envelope theorem,

d

dθ
[ŵ −G(ẑ, θ)− Ju(zu(θ), θ)] = Gθ(z

u(θ), θ)−Gθ(ẑ, θ) > 0 (A.1)

if and only if θ < θ1. Since α is close to θ1, there exists a type β ∈ (θ1, θ̄) such that

ŵ −G(ẑ, θ)− Ju(zu(θ), θ) > 0

if and only if θ ∈ (α, β). Then, define Θ̂ := (α, β). Note that for any quasi-divine belief,

Eẑ[Q(ẑ, θ)|θ ∈ Θ̂] > Q(ẑ,α) = ŵ.

Choose the allocation zd(θ) such that zd(θ) = ẑ if θ ∈ Θ̂; zd(θ) = zu(θ) otherwise. Clearly,

zd(θ) is nondecreasing. Then, by Definition 1, such an equilibrium fails quasi-divinity too.

It remains to show that the seller-optimal separating equilibrium satisfies quasi-divinity.

Suppose not, then there exists an off-path education level ẑ, a wage ŵ and a positive-measure

subset Θ̂, satisfying conditions (i) to (iii) of Definition 1. There are two possibilities. First, if

ẑ > zu(θ̄), then by the proof of Theorem 3, ẑ > z∗(θ) for all θ ∈ [θ, θ̄]. Note that ŵ < Q(ẑ, θ̄),

as required by condition (iii). Thus, for any θ, we have

ŵ −G(ẑ, θ) < Q(ẑ, θ̄)−G(ẑ, θ) < Q(zu(θ̄), θ̄)−G(zu(θ̄), θ) ≤ Ju(zu(θ), θ).

The second inequality is due to that Q(z, θ̄)−G(z, θ) is strictly concave in z and thus has a

unique maximizer that is smaller than z∗(θ̄), and that ẑ > zu(θ̄) > z∗(θ̄). The last inequality

is due to the optimality of zu(θ). Hence, Θ̂ is empty, a contradiction. Second, if ẑ < zu(θu0 ),

then by Corollary 3, θu0 = θ and zu(θ) = z∗(θ). Since Θ̂ has a positive measure, there exists

a type α > θ such that ŵ−G(ẑ,α) > Ju(zu(α),α). Moreover, since ẑ < zu(θ), the derivative

in (A.1) is negative for all θ ∈ [θ, θ̄]. This means that θ ∈ Θ̂, i.e.,

ŵ −G(ẑ, θ) > Ju(zu(θ), θ) = Jo(z∗(θ), θ) > Jo(ẑ, θ).

But for sufficiently pessimistic quasi-divine beliefs, we have |ŵ −Q(ẑ, θ)| < ε for any ε > 0.

That is, the LHS of the inequality is bounded above by Jo(ẑ, θ) + ε, a contradiction. Thus,

this equilibrium satisfies quasi-divinity. In summary, the theorem is proven.
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Lemma 2. In the observed case, for any δ > 0, there is a subgame associated with some T

in which a signaling equilibrium exists with the school’s payoff being greater than Π̄o − δ.

Proof. Since θ0 > θ, z̄(θ) is increasing in the right neighborhood of θ0. Moreover, note that

Jo(z, θ) → Q(0, θ) as z → 0. Thus, given δ, there exists a small ε > 0 such that

󰁝 θo(ε)

θ

Jo(ε, θ)dF (θ) +

󰁝 θ̄

θo(ε)

Jo(z̄(θ), θ)dF (θ) ≥ Π̄o − δ, (A.2)

where θo(ε) is the preimage of z̄(θ) at ε. Clearly, θo(ε) > θ0. Then, let the allocation be

zo(θ) =

󰀻
󰀿

󰀽
z̄(θ) if θ ≥ θo(ε)

ε otherwise,

and assume again that for all z outside the range of zo(θ), the school charges prohibitively

high prices and the labor market holds the worst belief. It is easy to verify that zo(θ) and

the wage schedule resulted from the above market belief constitute a signaling equilibrium

in the corresponding subgame such that the school’s payoff is equal to the LHS of (A.2).

Thus, the lemma is proven.

Lemma 3. In the unobserved case, if θu0 > θ, then zu(θu0 ) > z∗(θu0 ) > limθ↑θu0 z
u(θ) = 0.

Proof. Given Πu, the virtual surplus of θu0 should satisfy that

−f(θu0 ) (J
u(zu(θu0 ), θ

u
0 )− E[Q(0, θ)|θ ≤ θu0 ]) ≤ 0.

In particular, if θu0 > θ, then we must have

Ju(zu(θu0 ), θ
u
0 )− E[Q(0, θ)|θ ≤ θu0 ] = 0. (A.3)

It follows that zu(θ) is discontinuous at θu0 . Suppose not, then W u(z) has an upward jump

at 0, since zu(θ) is increasing in a small right neighborhood of θu0 and zu(θ) ≡ 0 for θ ≤ θu0 .

But then the school can profit by assigning a sufficiently small education level z > 0 to the

types in some neighborhood of θu0 , thereby receiving a discrete profit gain, a contradiction.

Thus, in each equilibrium with θu0 > θ, zu(θu0 ) > limθ↑θu0 z
u(θ) = 0. Since zu(θ) is increasing

at θu0 , J
u(zu(θu0 ), θ

u
0 ) = Jo(zu(θu0 ), θ

u
0 ). Note that J

o(0, θu0 ) = Q(0, θu0 ) > E[Q(0, θ)|θ ≤ θu0 ], as

θu0 > θ. Since Jo(z, θ) is strictly concave in z, it follows from (A.3) that zu(θu0 ) > z∗(θu0 ) > 0.

Thus, the lemma is proven.
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C Further discussion on the equilibrium of the unobserved case

Here, we provide a more comprehensive analysis of the equilibrium of the unobserved case.

We first establish the continuity of the virtual surplus in any equilibrium.

Lemma 4. In each equilibrium of the unobserved case, Ju(zu(θ), θ) is continuous in θ.

Proof. Define J(θ, θ̂, z) as in the proof of Theorem 2. Note that J(θ, θ̂, z) is continuous and

increasing in θ̂ on [θ, θ̄]. It follows from the intermediate value theorem that for each θ, there

exists a θ̂(θ) ∈ [θ, θ̄] such that J(θ, θ̂(θ), zu(θ)) = Ju(zu(θ), θ). In particular, if θ belongs to a

separating interval, then θ̂(θ) = θ. Fix an ε > 0, by the continuity of J(θ, θ̂, z), there exists

a δ1 > 0 such that for each θ′ with |θ′ − θ| < δ1, we have

|J(θ, θ̂(θ′), zu(θ′))− J(θ′, θ̂(θ′), zu(θ′))| < ε.

In addition, the optimality of zu(θ) implies that

J(θ, θ̂(θ), zu(θ)) ≥ J(θ, θ̂(θ′), zu(θ′)) > J(θ′, θ̂(θ′), zu(θ′))− ε.

On the other hand, there exists a δ2 > 0 such that for each θ′ with |θ′ − θ| < δ2, we have

|J(θ′, θ̂(θ), zu(θ))− J(θ, θ̂(θ), zu(θ))| < ε.

Similarly, the optimality of zu(θ′) implies that

J(θ′, θ̂(θ′), zu(θ′)) ≥ J(θ′, θ̂(θ), zu(θ)) > J(θ, θ̂(θ), zu(θ))− ε.

Together, we have that for each θ′ with |θ′ − θ| < min{δ1, δ2},

J(θ, θ̂(θ), zu(θ))− ε < J(θ′, θ̂(θ′), zu(θ′)) < J(θ, θ̂(θ), zu(θ)) + ε.

Note that J(θ′, θ̂(θ′), zu(θ′)) = Ju(zu(θ′), θ′). Thus, the lemma is proven.

Henceforth, we focus on the equilibrium in which zu(θ) is piecewise continuous. Without

loss of generality, assume that zu(θ) is right-continuous at each point of discontinuity and is

continuous at the end points. Thus, all equilibria can be divided into two groups: in the first,

θ̄ belongs to a separating interval, including a separating equilibrium with zu(θ) increasing

on [θu0 , θ̄]; in the second, θ̄ belongs to a pooling interval, including a pooling equilibrium with

zu(θ) ≡ z̃ on [θu0 , θ̄] for some z̃ > 0. Whereas it is complex and unnecessary for the paper to

fully characterize these equilibria, we provide a useful result for such equilibria as follows.
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Lemma 5. Suppose in some equilibrium, θ̄ belongs to a separating interval. Let [θ1, θ̄] be the

maximal separating interval incorporating θ̄, and let [θ2, θ1) be the maximal interval adjacent

to [θ1, θ̄] such that zu(θ) is continuous. If the equilibrium is not the seller-optimal separating

equilibrium, then zu(θ) is constant on [θ2, θ1), jumps discontinuously at θ1, and is continuous

and satisfies (4.3) on [θ1, θ̄]. Moreover, zu(θ) > z∗(θ) on [θ1, θ̄].

Proof. There are two possibilities. First, if θ1 = θu0 , then we have a separating equilibrium,

and thus, [θ2, θ1) = [θ, θu0 ) where z
u(θ) ≡ 0. By Mailath and von Thadden (2013, Lemma G),

there exists at most one point of discontinuity θ′ on (θ1, θ̄) such that limθ↑θ′ z
u(θ) < z∗(θ′) <

limθ↓θ′ z
u(θ). Then, by Mailath and von Thadden (2013, Lemma A), zu(θ) satisfies (4.3) in

both the left and right neighborhoods of θ′. But by the proof of Theorem 3, zu(θ) > z∗(θ) in

both neighborhoods, a contradiction, and thus, zu(θ) is continuous on [θ1, θ̄]. It follows from

Mailath and von Thadden (2013, Lemmas A and B) and the proof of Theorem 3 that zu(θ)

satisfies (4.3) and zu(θ) > z∗(θ) on (θ1, θ̄]. Then, we claim that θ1 > θo0, as the equilibrium

is not the seller-optimal separating equilibrium. To see this, first note that if θ1 = θo0, then

zu(θ1) = z∗(θ1). Specifically, if θ1 = θo0 = θ, then from the previous argument, zu(θ) ≥ z∗(θ).

Suppose zu(θ) > z∗(θ), then the school can profit by assigning z∗(θ) to a neighborhood of θ,

because the employers cannot punish such a deviation by having a worse belief than θ and

Jo(z, θ) is continuous and strictly concave in z. Thus, we have zu(θ) = z∗(θ). If θ1 = θo0 > θ,

then zu(θ1) = zo(θ1) = z∗(θ1) = 0. It follows that if in some separating equilibrium, θu0 = θo0,

then it must be the seller-optimal separating equilibrium. This in turn implies that θ1 ∕= θo0

in the current equilibrium. Note that Ju(zu(θ), θ) = Jo(zu(θ), θ) for θ ≥ θ1. Thus, if θ1 < θo0,

then 0 < Ju(zu(θo0), θ
o
0) ≤ Jo(z∗(θo0), θ

o
0) = 0, a contradiction. In summary, we have θ1 > θo0.

It follows that zu(θ1) ≥ z∗(θ1) > 0 and Jo(zu(θ1), θ1) = 0. This implies that zu(θ1) is the

maximal root of Jo(z, θ1) = 0. Thus, zu(θ) jumps discontinuously at θ1 with zu(θ1) > z∗(θ1).

Then, by Mailath and von Thadden (2013, Lemma A), zu(θ) also satisfies (4.3) at θ1.

Second, if θ1 > θu0 , then zu(θ) is discontinuous at θ1. Suppose not, then zu(θ) is constant

in the left neighborhood of θ1. It follows that the wage W
u(z) has an upward jump at zu(θ1).

Then, the school can profit by assigning zu(θ′) to a neighborhood of θ1 for some θ′ > θ1, a

contradiction. Moreover, it follows that zu(θ) is either separating or pooling on [θ2, θ1) since

zu(θ) is continuous there. But since zu(θ) is discontinuous at θ1 and is separating on [θ1, θ̄],

the above paragraph implies that [θ2, θ1) is a pooling interval and that zu(θ) is continuous

and zu(θ) ≥ z∗(θ) on [θ1, θ̄] with strict inequality for θ > θ1. Suppose zu(θ1) = z∗(θ1), then

we have Ju(zu(θ1), θ1) = Jo(z∗(θ1), θ1) > limθ↑θ1 J
u(zu(θ), θ) because zu(θ) is discontinuous

at θ1 and z∗(θ1) is the unique maximizer of Jo(z, θ1). But this contradicts Lemma 4 which
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states that Ju(zu(θ), θ) is continuous at θ1. Thus, z
u(θ1) > z∗(θ1). It follows from the above

paragraph that zu(θ) also satisfies (4.3) at θ1. Thus, the lemma is proven.

The proof of Lemma 5 implies that a continuous equilibrium where zu(θ) is continuous

on [θu0 , θ̄] is either separating or pooling. Moreover, it leads to the following corollary.

Corollary 3. In each separating equilibrium of the unobserved case, zu(θ) is continuous on

[θu0 , θ̄], and satisfies (4.3) on (θu0 , θ̄], with θu0 ≥ θo0. If θ
u
0 = θo0, then zu(θu0 ) = z∗(θu0 ) ≥ zo(θu0 ).

If θu0 > θo0, then zu(θu0 ) is the maximal root of Jo(z, θu0 ) = 0, and (4.3) also holds at θu0 .

Corollary 3 implies that given an equilibrium cutoff type, his education level is uniquely

determined. Thus, we can characterize the set of equilibrium initial points by characterizing

the set of cutoff types. Note that the lower bound of θu0 is θo0. Moreover, we can determine

the upper bound of θu0 by assuming the worst off-path belief. Specifically, denote by θ̄u0 the

upper bound of θu0 , which is the maximal root of

max
z≥0

{Q(z, θ)−G(z, θ)} = 0

if it exists or θ otherwise. Therefore, if θ̄u0 = θ, then the cutoff type and thus the separating

equilibrium outcome is unique. In contrast, if θ̄u0 > θ, then any type between θo0 and θ̄u0 can

be an equilibrium cutoff type for some proper off-path belief. Thus, the set of cutoff types is

given by [θo0, θ̄
u
0 ]. It follows from Corollary 3 that zu(θu0 ) is continuous and increasing in θu0 .

Figure 4 illustrates the set of education functions of separating equilibria. As depicted, each

education function satisfies that zu(θ) ≥ zo(θ) on [θu0 , θ̄] with strict inequality for θ > θu0 .

Now, we consider pooling equilibria to fully characterize the set of continuous equilibria.

For each θ, define a function of z on R+ as follows:

∆(z, θ) := E{Q(z, θ)|θ ∈ [θ, θ̄]}−G(z, θ)−max
y≥0

{Q(y, θ)−G(y, θ)} .

Note that ∆(z, θ) is the net gain in virtual surplus of type θ if in equilibrium all types pool

at education level z, compared to type θ’s optimal deviation under the worst off-path belief.

Because Qzz ≤ 0 and Gzz > 0, ∆(z, θ) is strictly concave in z for all θ ∈ [θ, θ̄]. Moreover, it

is clear that ∆(0, θ) ≤ 0 and that if ∆(0, θ) < 0, then ∆(z, θ) > 0 for some z > 0. Thus, for

each θ, ∆(z, θ) has a root and at most two roots on R+. Let x(θ) and x̄(θ) be the minimal

and maximal roots of ∆(z, θ) = 0, respectively, with the possibility that x(θ) = x̄(θ) = 0.

The next proposition provides a necessary and sufficient condition for the existence of

pooling equilibrium when z∗(θ) > 0.
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equilibrium initial points
in the uboserved case

z(θ)

0
θ

the observed case, zo(θ)

θ̄u0 θ̄

equilibrium education functions
in the uboserved case

θo0

Figure 4. The Set of Separating Equilibria. This figure illustrates the set of separating equilibria of the

unobserved case given that θo0 > θ. The shaded area depicts the set of equilibrium education functions. This

region is uniformly above the equilibrium education function of the observed case zo(θ). The bold line is the

set of equilibrium initial points with the cutoff type ranging from θo0 to θ̄u0 . Each point uniquely determines

an equilibrium education function zu(θ) and thus an equilibrium outcome. This figure considers the same

numerical example as Figure 2 such that the set of the initial points is {(θ, z)|z(θ) = 3θ − 1, 1
3 ≤ θ ≤ 1

2}.

Proposition 5. Suppose z∗(θ) > 0, then a pooling equilibrium exists in the unobserved case

if and only if x̄(θ) ≥ x(θ̄).

Proof. First, we show that a pooling equilibrium exists if x̄(θ) > x(θ̄). For each θ, define

y(θ) := argmax
z≥0

Q(z, θ)−G(z, θ).

It is clear that y(θ) is nondecreasing on [θ, θ̄]. By the envelope theorem, for any z > 0,

∆θ(z, θ) = Gθ(y(θ), θ)−Gθ(z, θ).

Because Gzθ < 0, ∆θ(z, θ) > 0 if and only if y(θ) < z. It follows that for any fixed z > 0,

∆(z, θ) is strictly quasiconcave on [θ, θ̄]. Assume that the labor market regards any off-path

education level as chosen by the lowest type. Therefore, a pooling equilibrium exists if there

exists some z̃ > 0 such that ∆(z̃, θ) ≥ 0 on [θ, θ̄]. This reduces to that ∆(z̃, θ),∆(z̃, θ̄) ≥ 0, as

∆(z̃, ·) is strictly quasiconcave. We consider two cases. First, if y(θ) > 0, then y(θ̄) > y(θ);

thus, ∆(y(θ), θ),∆(y(θ̄), θ̄) > 0. It follows that 0 < x(θ) < x̄(θ̄). Because x̄(θ) > x(θ̄), there

exists a z̃ such that max
󰀋
x(θ), x(θ̄)

󰀌
≤ z̃ ≤ min

󰀋
x̄(θ), x̄(θ̄)

󰀌
, and thus, ∆(z̃, θ),∆(z̃, θ̄) ≥ 0.
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Second, if y(θ) = 0, then y(θ) = x(θ). Because x̄(θ) > 0, ∆(z, θ) > 0 on (0, x̄(θ)). Therefore,

if y(θ̄) > 0, then 0 < x(θ̄) < x̄(θ̄), and thus, for any z̃ such that x(θ̄) ≤ z̃ ≤ min
󰀋
x̄(θ), x̄(θ̄)

󰀌
,

∆(z̃, θ),∆(z̃, θ̄) ≥ 0; if y(θ̄) = 0, then ∆(z, θ̄) ≥ ∆(z, θ) because Gθ < 0, and thus, for any

z̃ ∈ (0, x̄(θ)], ∆(z̃, θ),∆(z̃, θ̄) ≥ 0. In summary, a pooling equilibrium exists if x̄(θ) > x(θ̄).

The proof can be extended to x̄(θ) ≥ x(θ̄) if z∗(θ) > 0 since then y(θ) = z∗(θ) > 0.

Then, we consider the converse. Suppose a pooling equilibrium exists. Since Jo(z, θ) is

strictly concave in z and z∗(θ) > 0, for any z ∈ (0, z∗(θ)), Ju(z, θ) ≥ Jo(z, θ) > 0. It follows

that θu0 = θ. In addition, y(θ̄) > y(θ) = z∗(θ) > 0, thus both ∆(z, θ) and ∆(z, θ̄) have two

zeroes. Let z̃ > 0 be the equilibrium education level. We claim that z̃ ≤ x̄(θ). Suppose not,

then ∆(z̃, θ) < 0; thus, the school can profit by decreasing z(θ) in some neighborhood of θ,

with the monotonicity still holding. But note that ∆(z, θ) assumes the worst off-path belief,

meaning that any different off-path belief makes such a deviation weakly more tempting, a

contradiction. Similarly, suppose z̃ < x(θ̄), then ∆(z̃, θ̄) < 0; thus, the school can profit by

increasing z(θ) in some neighborhood of θ̄, with the monotonicity still holding, irrespective

of the off-path belief, a contradiction. In summary, we must have x(θ̄) ≤ z̃ ≤ x̄(θ). That is,

if a pooling equilibrium exists, then x̄(θ) ≥ x(θ̄). Thus, the proposition is proven.

Note that when z∗(θ) > 0, θ̄u0 = θ = θo0, thus there exists a unique separating equilibrium

outcome such that (θu0 , z
u(θu0 )) = (θ, z∗(θ)). If further x̄(θ) < x(θ̄), then there does not exist

any pooling equilibrium. Therefore, the unique continuous equilibrium is the seller-optimal

separating equilibrium in which (θu0 , z
u(θu0 )) = (θ, z∗(θ)). To summarize,

Corollary 4. If z∗(θ) > 0 and x̄(θ) < x(θ̄), then there exists a unique continuous equilibrium

in the unobserved case, that is, the seller-optimal separating equilibrium.

Example. To illustrate, we provide an example in which there exists a unique continuous

equilibrium. Assume that Q(z, θ) = θz+2z, C(z, θ) = 1.4z2 +2.8z− 1.4θz, and θ ∼ U [1, 2].

It follows that G(z, θ) = 1.4z2 + 5.6z − 2.8θz and E[Q(z, θ)|1 ≤ θ ≤ 2] = 3.5z. From basic

calculation, z∗(1) = y(1) = 1/14 and y(2) = 15/14. Thus,

Q(y(1), 1)−G(y(1), 1) =
1

140
and Q(y(2), 1)−G(y(2), 2) =

45

28
.

Substituting, we have

∆(z, 1) = −1.4z2 + 0.7z − 1

140
and ∆(z, 2) = −1.4z2 + 3.5z − 45

28
.

It follows that x̄(1) ≈ 0.49 and x(2) ≈ 0.61. Thus, from Corollary 4, the unique continuous

equilibrium is the seller-optimal separating equilibrium such that (θu0 , z
u(θu0 )) = (1, 1/14).
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D Signaling intensity and welfare comparison

In this section, we investigate how the welfare of each case considered in the paper depends

on the intensity of signaling. To make the concept of signaling intensity more concrete and

for expositional convenience, we consider a parametric example below.

Parametric example. Assume that Q(z, θ) = γθz + z with γ > 0, C(z, θ) = z2 + z − θz,

and θ ∼ U [0, 1]. Applying the results of the paper, we have zfb(θ) = (γ+1)θ
2

, zs(θ) = (2γ+1)θ
2

,

zo(θ) = (γ+2)θ−1
2

and zu(θ) = (γ+1)θ− γ+1
γ+2

. Therefore, zu(θ) ≥ zfb(θ) if and only if θ ≥ 2
γ+2

.

It is heuristic to define the intensity of signaling as the ratio of the overinvested education in

Spence’s game, i.e., zs(θ)− zfb(θ), to the first-best level zfb(θ). Substituting the education

functions, we have that for each θ > 0,

zs(θ)− zfb(θ)

zfb(θ)
=

γ

γ + 1
.

Clearly, the intensity of signaling is increasing in γ. Intuitively, the larger γ is, the stronger

complementarity between ability and education. In Spence’s game, higher education signals

higher ability. If ability complements education to a larger extent, the marginal benefit of

education will be higher, thereby enhancing signaling through education.

Then, we investigate how signaling intensity affects signaling mitigating the screening

distortion in the observed case. Analogously, we define the degree of screening distortion as

the ratio of the underinvested education, i.e., zfb(θ) − zo(θ), to the first-best level zfb(θ).

Substituting the education functions, we have that for each θ > 0,

zfb(θ)− zo(θ)

zfb(θ)
=

1− θ

(γ + 1)θ
.

For each fixed θ ∈ (0, 1), the degree of screening distortion is decreasing in γ. This means

that the more intense signaling is, the more screening distortion is reduced.

In the unobserved case, however, the more intense signaling is, the more over-education.

Note that the cutoff 2
γ+2

is decreasing in γ. That is, the over-education region is increasing

in the intensity of signaling. Subtracting the total surplus of the unobserved case from that

of the observed case, we have

󰁝 θ̄

θ

[S(zo(θ), θ)− S(zu(θ), θ)] dF (θ) =
γ(γ − 1)(γ + 1)3

12(γ + 2)3
.

Clearly, the RHS is positive if and only if γ > 1. That is, if signaling is sufficiently intense,

then the observed case yields higher social welfare than the unobserved case.
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Then, comparing welfare between the observed case and Spence’s game, we have
󰁝 θ̄

θ

[S(zo(θ), θ)− S(zs(θ), θ)] dF (θ) =
(γ2 + γ − 1)(γ2 + 3γ + 1)

12(γ + 2)2
.

Therefore, the observed case yields higher social welfare if and only if γ >
√
5−1
2

. It can also

be shown that the unobserved case yields higher social welfare than Spence’s game if and

only if γ is larger than some cutoff less than
√
5−1
2

. In summary, as the intensity of signaling

increases (i.e., as γ increases), the case that yields the highest social welfare will be Spence’s

game, the unobserved case, and the observed case, respectively.

E Applications of the model

To demonstrate model applicability, we present in a parallel manner to job market signaling

an adapted version of the model for conspicuous consumption and advertising.

Conspicuous consumption. A luxury good retailer (seller) first chooses a price scheme

T : R+ → R+, which specifies the price for each level of quality z. Then, à la Bagwell and

Bernheim (1996), a consumer (buyer) chooses a quality level to signal his privately known

wealth (type) θ to a representative social contact (receiver). The social contact observes z.

In the observed case, she also observes T ; in the unobserved case, she does not observe T .

In the spirit of the classic work of Veblen (1899), the social contact rewards the consumer

according to z. The reward W (z) is given by the social contact’s expected benefit E[Q(z, θ)]

from the consumer. The benefit function Q(z, θ) is increasing in both arguments: Qz, Qθ > 0

if z > 0. This is because a social contact benefits more from establishing relationships with

wealthier people and from interacting with people who consume higher quality goods (e.g.,

the good may be nonrivalrous). We also assume that Qzz ≤ 0 and Q(0, θ) ≡ 0.14 Moreover,

the consumer derives intrinsic utility V (z, θ) from the luxury good, which is increasing in

quality z. We assume that the single-crossing property holds: Vzθ > 0. That is, a wealthier

individual derives higher marginal utility from a luxury good. For example, a consumer of

yacht can voyage more often if he is richer, since he is better able to afford the fuel costs

and maintenance fees. Thus, a type-θ consumer who chooses quality z has utility

u(z, θ) := W (z) + V (z, θ)− T (z).

The retailer’s profit equals the revenue T (z) minus the cost C(z), with C ′, C ′′ > 0 and

C(0) = 0. The social surplus function is thus given by S(z, θ) := Q(z, θ) + V (z, θ)− C(z).
14The second condition captures the idea that the consumer may need at least an entry-level luxury good

to meet the social contact. For example, to join a yacht club, one usually has to own a yacht.
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Advertising. A media company (seller) first chooses a price scheme T : R+ → R+, which

specifies the price for each level of advertising z. Then, à la Milgrom and Roberts (1986), a

producer of a new product (buyer) chooses an advertising level to signal the privately known

product quality (type) θ to consumers. The consumers observe z. In the observed case, they

also observe T ; in the unobserved case, they do not observe T .

The producer’s total revenue consists of two parts: the purchase in the introductory stage

and the repeat purchase in the post-introductory stage. In the introductory stage, D(z) ≥ 0

consumers become aware of the product, and each purchases one unit at a price equal to the

expected quality E[θ|z]. The demand function D(z) is increasing, as more advertising leads

to higher consumer awareness. We also assume that Dzz ≤ 0 and D(0) = 0. Then, in the

post-introductory stage, the product’s actual quality θ is revealed, and thus, the consumers

are willing to purchase the good again at a price equal to θ. We assume that the consumers

who were unaware of the product do not purchase the good in the post-introductory stage.

Thus, the producer’s total revenue equals (E[θ|z] + θ)D(z), and its net payoff is given by

u(z, θ) := (E[θ|z] + θ)D(z)− T (z).

Note that the single-crossing property holds: uzθ > 0. This is due to the complementarity

between advertising and quality, i.e., the marginal revenue of the introductory advertising is

higher if the product is of higher quality, thereby allowing the producer to charge a higher

price in the post-introductory stage. The media company’s profit equals the revenue T (z)

minus the production cost C(z), with C ′, C ′′ > 0 and C(0) = 0. The social surplus function

is thus given by S(z, θ) := 2θD(z)− C(z).

Then, applying the main results, we have that the demand for a luxury good (advertising)

is more elastic if the social contact (consumers) cannot see the price scheme than otherwise.

It follows that the retailer of luxury good charges lower prices and the consumer chooses

a higher quality of the good when the social contact cannot observe the price scheme than

they would otherwise. Similarly, the media company charges lower prices, and the producer

chooses a higher advertising level, thereby obtaining a larger market share when consumers

cannot observe the price scheme than they would otherwise. The results also suggest that

price transparency benefits the seller of a luxury good (advertising) but harms the buyer. In

addition, promoting competition in these markets might not be socially beneficial.
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